of Singapore

Mechanising Staged Logic

Darius Foo, Yahui Song, Wei-Ngan Chin
SG PL Summit
4 December 2024

Staged logic

* A new, alternative program logic formulation
* Automated (SMT-based) verification
* Effectful higher-order programs

Staged Specification Logic for Verifying
Higher-Order Imperative Programs

I - - =5 1 — _ __ERQE
Darius Foo([])[0000-0002-3279-5827] yahyj Songl0000-0002-9760—5895] o q
Wei-Ngan Chin[0000—0002-9660—5682]

School of Computing, National University of Singapore, Singapore
{dariusf,yahuis,chinwn}@comp.nus.edu.sg

An effectful higher-order program

let x = ref [] in

foldr (fun ¢ t > x := ¢ :: Ix; ¢+ 1t) xs 0

A specification we would like to give it

Vx a, {x+—a}
foldr (fun ¢ t > x := ¢ :: Ix; ¢+ 1t) xs 0

{res. x — (xs ++ a) * | res = sum xs|}

How do we prove it automatically?

The traditional approach

* Parameterise specification of foldr over invariants/properties

Some clients may want to operate
only on certain kinds of lists f must preserve the invariant

(Vz,a,ys. {P z* Inv ys a'} f(z,a’) {r. Inv (z::ys) 'r'})}
x isList | xs* all P zs* Inv || a

VP, Inv, f, zs,l. {

foldr f al (Separation logic) property
o relating suffix of input list
{r. isList I zs*Inv s T} traversed to result

The traditional approach

* Parameterise specification of foldr over invariants/properties

* Automation is difficult
* How to infer invariants/properties to be supplied at call sites?
* How to infer specification? Clients require different parameterisations

Staged logic

* Natively represent effectful behavior in the logic

* The proof can then be done directly by induction
* Enabling existing techniques for automated inductive proof [Sun 24]

[Sun 24]“Proving Functional Program Equivalence via Directed Lemma Synthesis” Sun et al. FM 2024

The rest of this talk

* What are the primitives we need”? How do proofs work? (Part |)
* How do we mechanise the proof steps in Coqg? (Part Il)

Syntax of staged logic

Retain ordering of

Program states unknown calls/effects

[

¢ i=reqo |ens[r]o | f(o,r) | ;0 | @ Ve |Ix.@|Vx.e

[\

Obligation* Assumption*

*Flips depending on which side of a call/entailment we’re on

Syntax of staged logic

¢ ==reqo |ens[r]o | f(o,r) | ;0| @ Ve |Ix.e|Vx.e

{P} e{r.Q} =e ::reqP;ens|[r] O

e; f(a,r) :::reqP;ens|[r] O; f(a,r)

foldr

let foldr f init xs = foldr(f, init, xs, res) =
match xs with ens|res| xs=|[|Ares=init
| [1 => init V dh,t. ens xs=h:t;
h 0t = dr. foldr(f,init,t,r); f(h,r, res)

f h (foldr f init t)

Giving a specification: entailment

foldr(g, init, xs, res)
C req x — a;ens[res| x — (xs ++ a) * [res = sum xs]

where (fun ¢ t -> x :=c :: Ix; ¢+ t)ug

A proof strategy

Choose argument to perform induction on
Unfold non-recursive predicates
Rewrite using lemmas/induction hypothesis

b=

Normalize, reaching the form
(req o;enso; f(a,r);)*req o;ens|r| o

5. Dispatch proof obligations using entailment rules

The proof, very briefly

By well-founded induction on xs

foldr(g, init, xs, res)
C reqx — a;ens[res] x> (xs++ a) = [res = sum xs]

The proof, very briefly

Unfold foldr (and focus on the recursive case)

foldr(g, init, xs, res)
C reqx — a;ens[res] x> (xs++ a) = [res = sum xs]

The proof, very briefly

Unfold foldr (and focus on the recursive case)

ens (xs = h :: t); foldr(f, init, t,r); f (h,r, res)

C req x — a;ens[res| x — (xs ++ a) = [res = sum xs]

The proof, very briefly

Unfold foldr (and focus on the recursive case)

ens (xs = h :: t);
foldr(f, init, t,r);
f(h,r, res)

C req x — a;ens|[res| x > (xs ++ a) * [res = sum xs]

The proof, very briefly

Rewrite using the IH

I < XS

ens (xs = h :: t);
foldr(f, init, t,r);
f(h,r, res)

C req x — a;ens|[res| x > (xs ++ a) * [res = sum xs]

The proof, very briefly

Rewrite using the IH

ens (xs=h:t);
Yai,reqx > ap;ens (x = (t ++ ay) * [r = sum t]);

f(h,r,res)

C req x +— a;ens|[res| x+— (xs ++ a) * [res = sum xs]

The proof, very briefly

Unfold f

ens (xs=h:t);
Yai,reqx > ap;ens (x = (t ++ ay) * [r = sum t]);

f(h,r,res)

C req x +— a;ens|[res| x+— (xs ++ a) * [res = sum xs]

The proof, very briefly

Unfold f

ens (xs=h :: t);

Ya, reqxt— aq;ens (x — (t ++ aq) = |[r = sumt]);
Vz,reqx > z;ens[res] x+— (h :: z) x [res = h + 1]

C req x — a;ens|res] x — (xs ++ a) = [res = sum xs]

The proof, very briefly

Normalise Hi*H, + Hy %« Hp
ens H;;req Hy; E req Hp; ens Hr

NormEnsReq

ens (xs =h :: t);

Yai, reqx i ag;ens (x — (t ++ ap) = [r = sum t]);
Vz,reqx > z;ens[res|] x+— (h :: z) x [res = h + 1]

C reqxt— a;ens|res] x — (xs ++ a) * [res = sum xs]

The proof, very briefly

Normalise

(z2=(t++ar)) (x> (t++ay) = [r =sumt]) F (x> z) = ([r = sum t])

ens (xs =h :: t);

Yai, reqx i ag;ens (x — (t ++ ap) = [r = sum t]);
Vz,reqx > z;ens[res|] x+— (h :: z) x [res = h + 1]

C reqxt— a;ens|res] x — (xs ++ a) * [res = sum xs]

The proof, very briefly

Normalise

(z=(t++ar)) * (x> (t++ay) * [r =sumt]) v (x> z) = ([r = sum t])

ens (xs =h :: t);

Yai, reqx i ag;ens (x — (t ++ ap) = [r = sum t]);
Vz,reqx > z;ens[res] x+— (h :: z) x [res = h + 1]

C reqxt— a;ens|res] x — (xs ++ a) * [res = sum xs]

The proof, very briefly

Normalise

(z=(t++a))* (x> (t++a) *[r=sumt]) F (x> z) = ([r = sum t])

Vai, reqx— ag;
ens|res| x+— (h = (t ++ ay)) *
lres=h+r Ar=sumtAxs=h:t]
C reqx — a;ens[res| x +— (xs ++ a) = [res = sum xs]

The proof, very briefly

We have reached normal form

Vai, reqx— ag;
ens|res| x+— (h = (t ++ ay)) *
lres=h+r Ar=sumtAxs=h:t]
C reqx — a;ens[res| x +— (xs ++ a) = [res = sum xs]

The proof, very briefly

Contravariance of req H, + H;

EntailsReq
req H; C req Hs

Va, reqx— dy;
ens|res| x+— (h = (t ++ ay)) *
lres=h+r Ar=sumtAxs=h:t]
C req x — a;ens[res] x — (xs ++ a) = [res = sum xs]

The proof, very briefly

Contravariance of req
XH—akXxH—a

Va;, reqx— aq;
ens|res| x+— (h = (t ++ ay)) *
lres=h+r Ar=sumtAxs=h:t]
C reqx — a;ens[res| x> (xs ++ a) = [res = sum xs]

The proof, very briefly

Contravariance of req
ens|[res| x+— (h :: (t ++ a)) *

lres=h+rAr=sumtAxs=h:t
C ens|[res] x+— (xs ++ a) * [res = sum xs

The proof, very briefly

Covariance of ens O+ 0Oy

ens 1 C ens O,

EntailsEns

ens|res| x+— (h: (t ++a)) %
lres=h+rAr=sumtAxs=h:t
C ens|[res] x+— (xs ++ a) * [res = sum xs

The proof, very briefly

Separation logic entailment
x> (h=(t++a))*

lres=h+rAr=sumtAxs=h:t]
F x> (xs ++ a) x [res = sum xs]}

The proof, very briefly

SMT (and some properties of append and cons)

res=h+ (sumt) Axs=h:t
= h:(t++a) =xs++a A res= sum xs

The workflow

©

Specification +

lemmas
Normalise \
Program Formula Heifer* + SMT

*Higher-order Effectful Imperative Function Entailments & Reasoning

The workflow we would like

72 I
ﬁ Interactive proof
:
|

Specification +

lemmas !

|

Normalise :

1
— - e ﬁ? Certificate @
Program Formula Heifer + SMT Coq +

encoding

What we would like

vGoal (1)

xs : list val
IH : forall y : list val,

list_sub y xs —

forall res@ : val,

foldr_env + "foldr"$(vtup (vstr "f") (vtup (vint @) (vlist y)), res0)

c VvV (x : loc) (a : list val),

req (x -~ vlist a)
(ens_ (x «~» vlist (y + a) * \[res@ = vint (sum (to_int_list y))]))

How to encode&EF o E ¢ ?

res : val
Cog sequent
foldr_env
F 3 (x ¢ int) (11 : list val),
ens_ \[xs = vint x :: 11];;
(3 r : val,

] ("foldr"$(vtup (vstr "f") (vtup (vint @) (vlist 11)), r));;
Staged logic sequent ("f"$(vtup (vint x) r, res)))

c Vv (x : loc) (a : list val),
req (x -~ vlist a)
(ens_ (x «~~ vlist (xs ++ a) * \[res = vint (sum (to_int _list xs))1))

Semantics of staged logic

he H
8,h1,h2,0|:(p h,UlZQ
oA
heaps result

E,hy, hy,v FreqP @ if
Vh, h,, (h, £ Pand h; = hyoh,) = &, h,, hy,0 F ¢

8’ hl’ hz, v Fens Q lf Internalization of the operational
dhs, (h3, 0F Q) and hy = hiohs behaviour of heap entailment

Semantics of staged logic

An environment of unknown functions

\
89 hla h2>v F (P

A

heaps result

8, hl,hz,l) = f(a, l’) lf
83h19h2>v F S[f](aar)

E nCOd | ng Staged lOgIC An environment Sf unknown functions
E, hy,hy,0 E 1

oA

Separation logic: heap -> Prop heaps

result

Unfortunately, a direct shallow embedding would be impredicative

HOAS enioding, enabling substitution

Definition ufun := val -> val -> phi.

Definition phi := map var ufun -> heap -> heap -> val -> Prop.

E nCOd | ng Staged lOgIC An environment Sf unknown functions
E, hy,hy,0 E 1

Separation logic: heap -> Prop \hezps\result

Use a deep embedding and interpretation function

Inductive phi : Type := Definition ufun := val -> val -> phi.
| req : hprop -> phi -> phi
| ens : (val -> hprop) —> phi Inductive satisfies :
| seq : phi -> phi -> phi map var ufun ->
I

unk : var -> val -> val -> phi heap -> heap —> val -> phi -> Prop := ...

Encoding staged logic

Entailment: ¢ E ¢

Definition entails (f1 f2:phi) : Prop :=
forall env h1 h2 R,
satisfies env hl h2 R f1 ->
satisfies env h1 h2 R f2.

We use a semantic definition:

Lemmas about entailment can be stated and proved directly.

ffi = ffé Lemma entails_ens : forall H1 H2,
[T 7T EntailsEns H1 ==> H? ->
€ns 1; = €ns entails (ens H1) (ens H2).

Encoding staged logic

Entailmentsequent: &+ ¢ C ¢

Parameterised over the environment, supporting rules such as:

F=&(f)
Er f(a,r) E F(a,r)

EntailsUnfold

What we would like

vGoal (1)

xs : list val
IH : forall y : list val,

list_sub y xs —

forall res0@ : val,

foldr_env + "foldr"$(vtup (vstr "f") (vtup (vint @) (vlist y)), res0)

cV (x0 : loc) (a : list val),

req (x0 ~» vlist a)
(ens_ (x0 ~» vlist (y + a) \x \[res® = vint (sum (to_int_list y))1))

res : val
X : 1int
11 : list val
H: xs = vint x :: 11

Rewrite

How toencode&EF o E ¢ ?

r : val
.F

.\\‘\\\\Eldr_env

Fr("foldr"$(vtup (vstr "f") (vtup (vint @) (vlist 11)), r));;
///,2'(“f"$(vtup (vint x) r, res))
cV (x0 : loc) (a : list val),
req (x0 ~—» vlist a)
(ens_ (x@ ~ vlist (xs + a) * \[res = vint (sum (to_int_list xs))]1))

Unfold

Rewriting

* We use Coq’s setoid rewriting, with entails as the “equivalence”
relation

* entails must be shown to be properin both arguments

Contravariance

©1 & @2 @1

P3 P2 = P4

Covariance
P4

ProperEntails

Rewriting

* This can be specified by providing the following typeclass instance

#[global]
Instance Proper_entaills : Proper
(flip entails ====> entails ====> impl)

entails.

What we would like

EFenso; e C @)
& F @1 E reqo; @)

EntailsReqR
Rewriting

foldr_env

- req (x0 ~—» vlist a)
(ens_ (x0 -~~~ vlist (11 + a) \x \[r = vint (sum (to_int list 11))]);;
g (vtup (vint x) r) res)

C req (x0 vliist a)
(ens_ (x@ ~~> vlist (xs + a) \x \[res = vint (sum (to_int list xs))]))

Can be introduced into
the “spatial context”

What we would like

The spatial context, or the “current state” in
symbolic-execution style verifiers

foldr _env The precondition of the next “call”,
ens_ (x0 vlist aZ/ discharged via biabduction
req (xo0 vliist a)
(ens_«(x0 vliist (11 a) r = vint (sum (to_int_list 11))])
g (vtup Tw

res = vint (sum (to_int list xs))])

The postcondition of the next “call”

The final proof obligation

What we would like

“Symbolic execution” using biabduction

foldr_env
F ens_ (x0 -~ vlist (vint x :: 11 + a) * \[res = vint (x + sum (to_int_list 11))])

C ens_ (x0 ~» vlist (xs + a) * \[res = vint (sum (to_int_1list xs))])

What we would like

X0 ~~» vlist (vint x :: 11 + a) * \[res = vint (x + sum (to_int list 11))] =
X0 ~~> vlist ((vint x :: 11) + a) * \[res = vint (sum (to _int list (vint x :: 11)))]

What we would like

res = vint (x + sum (to_int _list 11)) res = vint (sum (to_int list (vint x 11)))

What we would like

No more goals

The mechanisation at a glance

* Other things formalised:
* Programs, big-semantics
e ::: (pairs), (history) triples
* Soundness

* 4700 LoC, on top of [Chargueraud 20]

Ta keawayS https://github.com/dariusf/staged

* An alternative program logic formulation

* New primitives; no wands, weakest preconditions, or step-indexing
* Higher-order + effects

e Other views

* Refinement between abstract programs
* Triples with syntactic reasoning
* Manipulating verification conditions directly

* Future work
* Automation to support certification
* Other applications of staged logic [Song 24]

https://github.com/dariusf/staged

Comparison with CFML

* A characteristic formula is a relation between precondition and
postcondition, i.e. cf : expr —-> (assertion -> assertion —> Prop)

* A staged formula is a syntactic entity whose semantics relates
pre- and post-states

* This allows more kinds of syntactic reasoning, e.g. mentioning unknown
functions

8, hl, hz,U F @

Biabduction Hy* Hy + Hy, % Hp [Calcagno 09]

Deeply embedded, for induction over derivations

Inductive biab : hprop -> hprop —-> hprop -> hprop —-> Prop :=
| b_base_empty : forall Hf,
biab \[] Hf \[] Hf

| b_pts_match : forall a b H1 H2 Ha Hf x,
biab Ha H1 H2 Hf —>
biab (\[a=b] * Ha) (x~~>a * H1) (x~~>b * H2) Hf

Lemma biab_sound : forall Ha H1 H2 Hf,
biab Ha H1 H2 Hf ->
Ha \x H1 ==> H2 \x Hf.

Why mechanise an automated verifier?

* Check claims in paper
* Clarify ideas: find the simplest version of each concept

* Communicate: other people can try the logic and build intuition
* Certification: validate implementation, not just ideas

* Support new work: work manually on harder proofs, broaden
fragment that can be fully automated

	Slide 1: Mechanising Staged Logic
	Slide 2: Staged logic
	Slide 3: An effectful higher-order program
	Slide 4: A specification we would like to give it
	Slide 5: The traditional approach
	Slide 6: The traditional approach
	Slide 7: Staged logic
	Slide 8: The rest of this talk
	Slide 9: Syntax of staged logic
	Slide 10: Syntax of staged logic
	Slide 11
	Slide 12: Giving a specification: entailment
	Slide 13: A proof strategy
	Slide 14: The proof, very briefly
	Slide 15: The proof, very briefly
	Slide 16: The proof, very briefly
	Slide 17: The proof, very briefly
	Slide 18: The proof, very briefly
	Slide 19: The proof, very briefly
	Slide 20: The proof, very briefly
	Slide 21: The proof, very briefly
	Slide 22: The proof, very briefly
	Slide 23: The proof, very briefly
	Slide 24: The proof, very briefly
	Slide 25: The proof, very briefly
	Slide 26: The proof, very briefly
	Slide 27: The proof, very briefly
	Slide 28: The proof, very briefly
	Slide 29: The proof, very briefly
	Slide 30: The proof, very briefly
	Slide 31: The proof, very briefly
	Slide 32: The proof, very briefly
	Slide 33: The workflow
	Slide 34: The workflow we would like
	Slide 35: What we would like
	Slide 36: Semantics of staged logic
	Slide 37: Semantics of staged logic
	Slide 38: Encoding staged logic
	Slide 39: Encoding staged logic
	Slide 40: Encoding staged logic
	Slide 41: Encoding staged logic
	Slide 46: What we would like
	Slide 47: Rewriting
	Slide 48: Rewriting
	Slide 51: What we would like
	Slide 52: What we would like
	Slide 53: What we would like
	Slide 54: What we would like
	Slide 55: What we would like
	Slide 56: What we would like
	Slide 57: The mechanisation at a glance
	Slide 58: Takeaways
	Slide 59
	Slide 60: Comparison with CFML
	Slide 61: Biabduction
	Slide 62: Why mechanise an automated verifier?

