
Mechanising Staged Logic

Darius Foo, Yahui Song, Wei-Ngan Chin
SG PL Summit

4 December 2024

1



Staged logic

• A new, alternative program logic formulation
• Automated (SMT-based) verification
• Effectful higher-order programs



An effectful higher-order program



A specification we would like to give it

How do we prove it automatically?



• Parameterise specification of foldr over invariants/properties

The traditional approach

(Separation logic) property 
relating suffix of input list 

traversed to result

Some clients may want to operate 
only on certain kinds of lists f must preserve the invariant



The traditional approach

• Parameterise specification of foldr over invariants/properties
• Automation is difficult

• How to infer invariants/properties to be supplied at call sites?
• How to infer specification? Clients require different parameterisations



Staged logic

• Natively represent effectful behavior in the logic
• The proof can then be done directly by induction

• Enabling existing techniques for automated inductive proof [Sun 24]

[Sun 24] “Proving Functional Program Equivalence via Directed Lemma Synthesis” Sun et al. FM 2024



The rest of this talk

• What are the primitives we need? How do proofs work? (Part I)
• How do we mechanise the proof steps in Coq? (Part II)



Syntax of staged logic
Program states

Obligation* Assumption*

*Flips depending on which side of a call/entailment we’re on

Retain ordering of 
unknown calls/effects



Syntax of staged logic





Giving a specification: entailment

where



1. Choose argument to perform induction on
2. Unfold non-recursive predicates
3. Rewrite using lemmas/induction hypothesis
4. Normalize, reaching the form

5. Dispatch proof obligations using entailment rules

A proof strategy



The proof, very briefly

By well-founded induction on xs



The proof, very briefly

Unfold foldr (and focus on the recursive case)



The proof, very briefly

Unfold foldr (and focus on the recursive case)



The proof, very briefly

Unfold foldr (and focus on the recursive case)



The proof, very briefly

Rewrite using the IH



The proof, very briefly

Rewrite using the IH



The proof, very briefly

Unfold f



The proof, very briefly

Unfold f



The proof, very briefly

Normalise



The proof, very briefly

Normalise



The proof, very briefly

Normalise



The proof, very briefly

Normalise



The proof, very briefly

We have reached normal form



The proof, very briefly

Contravariance of req



The proof, very briefly

Contravariance of req



The proof, very briefly

Contravariance of req



The proof, very briefly

Covariance of ens



The proof, very briefly

Separation logic entailment



The proof, very briefly

SMT (and some properties of append and cons)



The workflow

Normalise

Program Formula

Specification + 
lemmas

Heifer* + SMT

:::

*Higher-order Effectful Imperative Function Entailments & Reasoning



The workflow we would like

Normalise

Program Formula

Specification + 
lemmas

Heifer + SMT

:::

Coq + 
encoding

Interactive proof

Certificate



What we would like

Coq sequent

Staged logic sequent

How to encode ?



Semantics of staged logic

heaps result

Internalization of the operational
behaviour of heap entailment



Semantics of staged logic
An environment of unknown functions

heaps result



Separation logic:

Unfortunately, a direct shallow embedding would be impredicative

Encoding staged logic

HOAS encoding, enabling substitution

An environment of unknown functions

heaps result



Separation logic:

Use a deep embedding and interpretation function

Encoding staged logic An environment of unknown functions

heaps result



Entailment:

We use a semantic definition:

Lemmas about entailment can be stated and proved directly.

Encoding staged logic



Entailment sequent:

Parameterised over the environment, supporting rules such as:

Encoding staged logic



What we would like

Rewrite

Unfold

How to encode ?



Rewriting

• We use Coq’s setoid rewriting, with entails as the “equivalence” 
relation

• entails must be shown to be proper in both arguments

Contravariance

Covariance



Rewriting

• This can be specified by providing the following typeclass instance



What we would like

Can be introduced into 
the “spatial context”

Rewriting



What we would like

The spatial context, or the “current state” in 
symbolic-execution style verifiers

The precondition of the next “call”,
discharged via biabduction

The final proof obligation

The postcondition of the next “call”



What we would like

“Symbolic execution” using biabduction



What we would like



What we would like



What we would like



The mechanisation at a glance

• Other things formalised:
• Programs, big-semantics
• ::: (pairs), (history) triples
• Soundness

• 4700 LoC, on top of [Charguéraud 20]



Takeaways

• An alternative program logic formulation
• New primitives; no wands, weakest preconditions, or step-indexing
• Higher-order + effects

• Other views
• Refinement between abstract programs
• Triples with syntactic reasoning
• Manipulating verification conditions directly

• Future work
• Automation to support certification
• Other applications of staged logic [Song 24]

https://github.com/dariusf/staged

https://github.com/dariusf/staged




Comparison with CFML

• A characteristic formula is a relation between precondition and 
postcondition, i.e.

• A staged formula is a syntactic entity whose semantics relates 
pre- and post-states
• This allows more kinds of syntactic reasoning, e.g. mentioning unknown 

functions



Biabduction

Deeply embedded, for induction over derivations

[Calcagno 09]



Why mechanise an automated verifier?

• Check claims in paper
• Clarify ideas: find the simplest version of each concept
• Communicate: other people can try the logic and build intuition
• Certification: validate implementation, not just ideas
• Support new work: work manually on harder proofs, broaden 

fragment that can be fully automated


	Slide 1: Mechanising Staged Logic
	Slide 2: Staged logic
	Slide 3: An effectful higher-order program
	Slide 4: A specification we would like to give it
	Slide 5: The traditional approach
	Slide 6: The traditional approach
	Slide 7: Staged logic
	Slide 8: The rest of this talk
	Slide 9: Syntax of staged logic
	Slide 10: Syntax of staged logic
	Slide 11
	Slide 12: Giving a specification: entailment
	Slide 13: A proof strategy
	Slide 14: The proof, very briefly
	Slide 15: The proof, very briefly
	Slide 16: The proof, very briefly
	Slide 17: The proof, very briefly
	Slide 18: The proof, very briefly
	Slide 19: The proof, very briefly
	Slide 20: The proof, very briefly
	Slide 21: The proof, very briefly
	Slide 22: The proof, very briefly
	Slide 23: The proof, very briefly
	Slide 24: The proof, very briefly
	Slide 25: The proof, very briefly
	Slide 26: The proof, very briefly
	Slide 27: The proof, very briefly
	Slide 28: The proof, very briefly
	Slide 29: The proof, very briefly
	Slide 30: The proof, very briefly
	Slide 31: The proof, very briefly
	Slide 32: The proof, very briefly
	Slide 33: The workflow
	Slide 34: The workflow we would like
	Slide 35: What we would like
	Slide 36: Semantics of staged logic
	Slide 37: Semantics of staged logic
	Slide 38: Encoding staged logic
	Slide 39: Encoding staged logic
	Slide 40: Encoding staged logic
	Slide 41: Encoding staged logic
	Slide 46: What we would like
	Slide 47: Rewriting
	Slide 48: Rewriting
	Slide 51: What we would like
	Slide 52: What we would like
	Slide 53: What we would like
	Slide 54: What we would like
	Slide 55: What we would like
	Slide 56: What we would like
	Slide 57: The mechanisation at a glance
	Slide 58: Takeaways
	Slide 59
	Slide 60: Comparison with CFML
	Slide 61: Biabduction
	Slide 62: Why mechanise an automated verifier?

