
Protocol Conformance with
Choreographic PlusCal

Darius Foo, Andreea Costea, and Wei-Ngan Chin

National University of Singapore

17th International Symposium on Theoretical Aspects of Software Engineering

6 July 2023

“Transactions shouldn’t be forgotten”
“System should remain available”

Distributed Systems

Distributed Systems

Crash failure
Arbitrary message delays
(asynchronous network)

Message loss,
duplication,
reordering

??
Partitions

Restarts

“Transactions shouldn’t be forgotten”
“System should remain available”

Distributed Systems

Crash failure

Message loss,
duplication,
reordering

??
Partitions

⊨ ϕ

Arbitrary message delays
(asynchronous network) Restarts

Validity
Agreement

Integrity
Termination

Fault tolerance

Distributed Systems

Crash failure

Message loss,
duplication,
reordering

??
Partitions

Consensus protocols

⊑
Conformance

Arbitrary message delays
(asynchronous network) Restarts

ϕ⊨

Consensus protocols in practice

(2014)

Raft is a fully-featured consensus protocol that operates by quorum, performs
leader election, maintains logs for durability, handles reconfiguration…

Consensus protocols in practice

… 137 more implementations

How hard is it to implement a protocol
correctly?

8 bugs

(2015)

How hard is it to implement a protocol
correctly?

https://pusher.com/blog/fuzz-testing-distributed-systems-with-quickcheck/

14 bugs

(2016)

How hard is it to implement a protocol
correctly?

22 bugs
10 CVEs

(2023)

How hard is it to implement a protocol
correctly?

13 bugs

(2025)

Why is conformance hard?

Why is conformance hard?

• Underspecification
• Fully-fledged protocols are large and complex

• Basic Raft: 485 LoC

• TLC-optimized Raft: 653 LoC

• Raft with reconfiguration: 1083 LoC

• Large state machines (TLA+) are hard to extend;
conventional wisdom is to keep them abstract

• PlusCal allows specifying implementation
concerns, but is not used much in practice
(25% of protocols in tlaplus/Examples)

https://github.com/ongardie/raft.tla
https://github.com/ongardie/raft.tla
https://github.com/Vanlightly/raft-tlaplus/blob/main/specifications/standard-raft/Raft.tla
https://github.com/Vanlightly/raft-tlaplus/blob/main/specifications/standard-raft/Raft.tla
https://github.com/Vanlightly/raft-tlaplus/blob/main/specifications/standard-raft/Raft.tla
https://github.com/Vanlightly/raft-tlaplus/blob/main/specifications/standard-raft/Raft.tla
https://github.com/Vanlightly/raft-tlaplus/blob/main/specifications/standard-raft/RaftWithReconfigAddRemove.tla
https://github.com/Vanlightly/raft-tlaplus/blob/main/specifications/standard-raft/RaftWithReconfigAddRemove.tla

Why is conformance hard?

• Implementations are large and complex
• Real-world Raft: etcd, 20k LoC, with concurrency, I/O, etc.

• Implementation bugs can compromise protocol guarantees

• Lack of lightweight tools for justifying parts of the implementation and
supporting automated checks

Challenges Contributions

1. Underspecification due to
inadequate specification
medium

2. Conformance of real-world
consensus implementations

1. Choreographic PlusCal

2. Practical monitoring using
existing TLA+ specifications

TLA+PlusCal
TLC, TLAPS, Apalache

Monitoring

Choreographic
Pluscal

Two-phase commit

https://web.kaust.edu.sa/Faculty/MarcoCanini/classes/CS240/F19/docs/L10-2pc.pdf

(after acquiring all resources,
e.g. locks, they will need)

Two-phase commit in PlusCal

Two-phase commit in PlusCal

Two-phase commit in PlusCal

…

Two-phase commit

https://web.kaust.edu.sa/Faculty/MarcoCanini/classes/CS240/F19/docs/L10-2pc.pdf

Choreographic PlusCal: choreography

Choreographic PlusCal: all

Encoding a
multicast

Choreographic PlusCal: task and cancel

Stop if
participant

aborts

Choreographic PlusCal

Choreographic PlusCal

Projection & monitoring

Projection & monitoring

• Choreographic languages/logics (e.g. session types) have a projection
operation to derive local programs for verification, monitoring, and/or
code generation

𝑝𝑟𝑜𝑗𝑒𝑐𝑡 𝑎 → 𝑏 = {! 𝑏, ? 𝑎}

Projection & monitoring

• We define projection across both Choreographic PlusCal and TLA+

• Integrates with existing toolchain

• Monitoring works for vanilla TLA+ as well (assuming some syntactic conditions)

Projection

process (a \in A) {

 Send(b, "msg")

}

process (b \in B) {

 v = Receive(a)

}

A_send(self, b) ==

 /\ Send(b, "msg")

 /\ UNCHANGED <<inbox, v>>

B_send(self, a) ==

 /\ v'[self] := Receive(a)

 /\ UNCHANGED <<outbox>>

choreography (a \in A, b \in B) {

 Transmit(a, b, v, "msg")

}

VARIABLES v,

inbox, outbox

VARIABLES inbox, outbox

A_send(b) ==

 /\ Send(b, "msg”)

 /\ UNCHANGED <<inbox>>

VARIABLES v, inbox, outbox

B_send(a) ==

 /\ v := Receive(a)

 /\ UNCHANGED <<outbox>>

TLA+

Multiple
TLA+
models

Ch. PlusCal

PlusCal VARIABLES v,

inbox, outbox

VARIABLES v,

inbox, outbox

Monitoring

⊨ϕ

Choreographic PlusCal

Monitoring

• Instrument system to collect traces
• Refinement mapping

• Function from concrete to abstract state

• Abstracts away details, reinterprets system behavior in terms of the model’s

• May require auxiliary state to define

• Deep embedding of TLA+ formulae in Go

type TLA interface {

 String() string

 MarshalJSON() ([]byte, error)

}

Monitoring

• Instrument system to collect traces
• Refinement mapping

• Linearization points
• Program locations where state changes become visible

• Can vary significantly between implementations

• May require auxiliary state to define

Monitoring

• Instrument system to collect traces

• Validate behaviors
• Model-based trace checking [Pressler 18, Davis 20]

• Compile model into monitor and validate on the fly
• Online or offline

• Scalable, possible to enable in production/fuzzing

Conclusion

• Choreographic PlusCal + monitoring

• What’s in the paper?
• Details, formalization, soundness of new features and projection

• Future work
• Liveness: runtime verification

• New classes of protocols, e.g. role-parametric

• User-provided refinement mapping and linearization points are all trusted –
statically check

Thank you!

https://github.com/dariusf/tlaplus/tree/cpcal

https://github.com/dariusf/tlaplus/tree/cpcal
https://github.com/dariusf/tlaplus/tree/cpcal
https://github.com/dariusf/tlaplus/tree/cpcal
https://github.com/dariusf/tlaplus/tree/cpcal
https://github.com/dariusf/tlaplus/tree/cpcal
https://github.com/dariusf/tlaplus/tree/cpcal
https://github.com/dariusf/tlaplus/tree/cpcal
https://github.com/dariusf/tlaplus/tree/cpcal

Monitoring

Specification with TLA+

… must also check if other actions are enabled in Candidate state, else nondeterminism

Figuring out how actions are related is tedious, e.g. sequentially

Specification with TLA+

Figuring out how actions are related is tedious, e.g. send-receive

Specification with TLA+

Must do this repeatedly to get a sense
of the flow of the protocol

Must thread state through functions manually

Non-compositionality

Specification with TLA+

Linking specification to implementation

Many “industrial-grade” unverified protocol implementations…

Linking specification to implementation

… many specifications as well, but unrelated

	Slide 1: Protocol Conformance with Choreographic PlusCal
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6: Consensus protocols in practice
	Slide 7: Consensus protocols in practice
	Slide 8: How hard is it to implement a protocol correctly?
	Slide 9: How hard is it to implement a protocol correctly?
	Slide 10: How hard is it to implement a protocol correctly?
	Slide 11: How hard is it to implement a protocol correctly?
	Slide 12: Why is conformance hard?
	Slide 13: Why is conformance hard?
	Slide 14: Why is conformance hard?
	Slide 15: Challenges
	Slide 16: Two-phase commit
	Slide 17: Two-phase commit in PlusCal
	Slide 18: Two-phase commit in PlusCal
	Slide 19: Two-phase commit in PlusCal
	Slide 20: Two-phase commit
	Slide 21: Choreographic PlusCal: choreography
	Slide 22: Choreographic PlusCal: all
	Slide 23: Choreographic PlusCal: task and cancel
	Slide 24: Choreographic PlusCal
	Slide 25: Choreographic PlusCal
	Slide 26: Projection & monitoring
	Slide 28: Projection & monitoring
	Slide 29: Projection & monitoring
	Slide 30: Projection
	Slide 31
	Slide 32: Monitoring
	Slide 33: Monitoring
	Slide 34: Monitoring
	Slide 35: Conclusion
	Slide 36: Thank you!
	Slide 37
	Slide 38: Monitoring
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43: Linking specification to implementation
	Slide 44: Linking specification to implementation
	Slide 45

