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Consensus protocols in practice

(2014)

Raft is a fully-featured consensus protocol that operates by quorum, performs 
leader election, maintains logs for durability, handles reconfiguration…



Consensus protocols in practice

… 137 more implementations



How hard is it to implement a protocol 
correctly?

8 bugs

(2015)



How hard is it to implement a protocol 
correctly?

https://pusher.com/blog/fuzz-testing-distributed-systems-with-quickcheck/

14 bugs

(2016)



How hard is it to implement a protocol 
correctly?

22 bugs
10 CVEs

(2023)



How hard is it to implement a protocol 
correctly?

13 bugs

(2025)
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Why is conformance hard?

• Underspecification
• Fully-fledged protocols are large and complex

• Basic Raft: 485 LoC

• TLC-optimized Raft: 653 LoC

• Raft with reconfiguration: 1083 LoC

• Large state machines (TLA+) are hard to extend; 
conventional wisdom is to keep them abstract

• PlusCal allows specifying implementation 
concerns, but is not used much in practice
(25% of protocols in tlaplus/Examples)

https://github.com/ongardie/raft.tla
https://github.com/ongardie/raft.tla
https://github.com/Vanlightly/raft-tlaplus/blob/main/specifications/standard-raft/Raft.tla
https://github.com/Vanlightly/raft-tlaplus/blob/main/specifications/standard-raft/Raft.tla
https://github.com/Vanlightly/raft-tlaplus/blob/main/specifications/standard-raft/Raft.tla
https://github.com/Vanlightly/raft-tlaplus/blob/main/specifications/standard-raft/Raft.tla
https://github.com/Vanlightly/raft-tlaplus/blob/main/specifications/standard-raft/RaftWithReconfigAddRemove.tla
https://github.com/Vanlightly/raft-tlaplus/blob/main/specifications/standard-raft/RaftWithReconfigAddRemove.tla


Why is conformance hard?

• Implementations are large and complex
• Real-world Raft: etcd, 20k LoC, with concurrency, I/O, etc.

• Implementation bugs can compromise protocol guarantees

• Lack of lightweight tools for justifying parts of the implementation and 
supporting automated checks



Challenges Contributions

1. Underspecification due to 
inadequate specification 
medium

2. Conformance of real-world 
consensus implementations

1. Choreographic PlusCal

2. Practical monitoring using 
existing TLA+ specifications

TLA+PlusCal
TLC, TLAPS, Apalache

Monitoring

Choreographic
Pluscal



Two-phase commit

https://web.kaust.edu.sa/Faculty/MarcoCanini/classes/CS240/F19/docs/L10-2pc.pdf

(after acquiring all resources, 
e.g. locks, they will need)



Two-phase commit in PlusCal



Two-phase commit in PlusCal



Two-phase commit in PlusCal

…



Two-phase commit

https://web.kaust.edu.sa/Faculty/MarcoCanini/classes/CS240/F19/docs/L10-2pc.pdf



Choreographic PlusCal: choreography



Choreographic PlusCal: all

Encoding a 
multicast



Choreographic PlusCal: task and cancel

Stop if 
participant 

aborts



Choreographic PlusCal



Choreographic PlusCal



Projection & monitoring



Projection & monitoring

• Choreographic languages/logics (e.g. session types) have a projection 
operation to derive local programs for verification, monitoring, and/or 
code generation

𝑝𝑟𝑜𝑗𝑒𝑐𝑡 𝑎 → 𝑏 = {! 𝑏, ? 𝑎}



Projection & monitoring

• We define projection across both Choreographic PlusCal and TLA+

• Integrates with existing toolchain

• Monitoring works for vanilla TLA+ as well (assuming some syntactic conditions)



Projection

process (a \in A) {

  Send(b, "msg")

}

process (b \in B) {

  v = Receive(a)

}

A_send(self, b) ==

  /\ Send(b, "msg")

  /\ UNCHANGED <<inbox, v>>

B_send(self, a) ==

  /\ v'[self] := Receive(a)

  /\ UNCHANGED <<outbox>>

choreography (a \in A, b \in B) {

  Transmit(a, b, v, "msg")

}

VARIABLES v, 

inbox, outbox

VARIABLES inbox, outbox

A_send(b) ==

  /\ Send(b, "msg”)

  /\ UNCHANGED <<inbox>>

VARIABLES v, inbox, outbox

B_send(a) ==

  /\ v := Receive(a)

  /\ UNCHANGED <<outbox>>

TLA+

Multiple 
TLA+ 
models

Ch. PlusCal

PlusCal VARIABLES v, 

inbox, outbox

VARIABLES v, 

inbox, outbox



Monitoring

⊨ϕ

Choreographic PlusCal



Monitoring

• Instrument system to collect traces
• Refinement mapping

• Function from concrete to abstract state

• Abstracts away details, reinterprets system behavior in terms of the model’s

• May require auxiliary state to define

• Deep embedding of TLA+ formulae in Go

type TLA interface {

  String() string

  MarshalJSON() ([]byte, error)

}



Monitoring

• Instrument system to collect traces
• Refinement mapping

• Linearization points
• Program locations where state changes become visible

• Can vary significantly between implementations

• May require auxiliary state to define



Monitoring

• Instrument system to collect traces

• Validate behaviors
• Model-based trace checking [Pressler 18, Davis 20]

• Compile model into monitor and validate on the fly
• Online or offline

• Scalable, possible to enable in production/fuzzing



Conclusion

• Choreographic PlusCal + monitoring

• What’s in the paper?
• Details, formalization, soundness of new features and projection

• Future work
• Liveness: runtime verification

• New classes of protocols, e.g. role-parametric

• User-provided refinement mapping and linearization points are all trusted – 
statically check



Thank you!

https://github.com/dariusf/tlaplus/tree/cpcal

https://github.com/dariusf/tlaplus/tree/cpcal
https://github.com/dariusf/tlaplus/tree/cpcal
https://github.com/dariusf/tlaplus/tree/cpcal
https://github.com/dariusf/tlaplus/tree/cpcal
https://github.com/dariusf/tlaplus/tree/cpcal
https://github.com/dariusf/tlaplus/tree/cpcal
https://github.com/dariusf/tlaplus/tree/cpcal
https://github.com/dariusf/tlaplus/tree/cpcal




Monitoring



Specification with TLA+



… must also check if other actions are enabled in Candidate state, else nondeterminism

Figuring out how actions are related is tedious, e.g. sequentially

Specification with TLA+



Figuring out how actions are related is tedious, e.g. send-receive

Specification with TLA+

Must do this repeatedly to get a sense 
of the flow of the protocol



Must thread state through functions manually

Non-compositionality

Specification with TLA+



Linking specification to implementation

Many “industrial-grade” unverified protocol implementations…



Linking specification to implementation

… many specifications as well, but unrelated
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