BE &

NUS

National University
of Singapore

Protocol Conformance with
Choreographic PlusCal

Darius Foo, Andreea Costea, and Wei-Ngan Chin

National University of Singapore
17th International Symposium on Theoretical Aspects of Software Engineering
6 July 2023

Distributed Systems

“transactions
shouldn’t be
forgotten”

Distributed Systems

l" :
Message loss, \ / “transactions

duplication, shouldn’t be

- =
reordering M forgotten”
Aions \

o
Crash failure

Arbitrary message delays
(asynchronous network)

Restarts

Distributed Systems

: ’
Message loss, / Validity

27
duplication, |= (p Agreement
reordering =Sl Integrity
ﬂ Termination
\ Fault tolerance
27
Partitions

b s

Crash failure

Arbitrary message delays

(asynchronous network) Restarts

Distributed Systems

;- I

Specifications Verification

TLA+ Proof System
Checking a Model

Message loss,
duplication,

reordering @b
Partitions \

Consensus protocols

s s Quorums
___— & : Leader election

_ Crash failure Logs
Arbitrary message delays Reconfiguration

(asynchronous network) Restarts

How hard is it to implement a protocol
correctly?

In Search of an Understandable Consensus Algorithm

Diego Ongaro and John Ousterhout
Stanford University

(2014)

How hard is it to implement a protocol
correctly?

Where can | get Raft?

There are many implementations of Raft available in various stages of development. This table lists the implementations we know about with source code available. The most popular
and/or recently updated implementations are towards the top. This information will inevitably get out of date; please submit a pull request or an issue to update it.

Stars

13,312%

9,211%
26,166%

10,501%

5,439%

7,220%

3,560%

Name

TiKV

nebula-graph-storage
RethinkDB

Seastar Raft

hazelcast-raft

hashicorp/raft

braft

Primary Authors

Jay, ngaut, siddontang,
tiancaiamao

Sherman Ye, Doodle Wang

Gleb Natapov, Konstantin
Osipov, Pavel Solodovnikov,
Alejo Sanchez, Kamil Braun,
Tomash Grabiec

Mehmet Dogan, Ensar Basri
Kahveci

Armon Dadgar

Zhangyi Chen, Yao Wang

Language

Rust

C++
C++

C++20

Java

Go

C++

License

Apache-2.0

Apache-2.0
Apache-2.0

AGPL

Apache-2.0

MPL-2.0

Apache-2.0

Leader Election
+ Log
Replication?

Yes

Yes
Yes

Yes

Yes

Yes

Yes

... 137 more implementations

Persistence?

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Membership
Changes?

Yes

Yes
Yes

Yes

Yes

Yes

Yes

Log
Compaction?

Yes

Yes
Yes

Yes

Yes

Yes

Yes

How hard is it to implement a protocol

correctly?

Minimizing Faulty Executions of Distributed Systems (2015)

Colin Scott* Aurojit Panda*

Arvind Krishnamurthy
*UC Berkeley °ICSI

Abstract

hen troubleshooting buggy executions of distributed

(s, developers typically start by manually separat-
ents that are responsible for triggering the
from those that are extraneous (noise). We
, a tool for automatically performing this
in. We apply DEMi to buggy executions of two
distributed systems, Raft and Spark, and
produces minimized executions that are be-
X and 4.6X the size of optimal executions.

Vjekoslav Brajkovic®

George Necula*

Scott Shenker*®
TUniversity of Washington

much more costly than machine time, automated mini-
mization tools for sequential test cases [24, 86,94] have
already proven themselves valuable, and are routinely
applied to bug reports for software projects such as Fire-
fox [1], LLVM [7], and GCC [6].

In this paper we address the problem of automatically
minimizing executions of distributed systems. We focus
on executions generated by fuzz testing, but we also il-
lustrate how one might minimize production traces.

Distributed executions have two distinguishing fea-

How hard is it to implement a protocol
correctly?

Fuzz testing distributed S0

systems with QuickCheck (2016)

)X-' | QuickCheck

https://pusher.com/blog/fuzz-testing-distributed-systems-with-quickcheck/

How hard is it to implement a protocol
correctly?

Distributed System Fuzzing (2023)

Ruijie Meng* T
National University of Singapore
Singapore
ruijie_meng@u.nus.edu

Abhik Roychoudhury*
National University of Singapore
Singapore
abhik@comp.nus.edu.sg

the lightweight approach of choice for finding
agrams. It provides a balance between effi-
Es by conducting a biased random search over
inputs using a feedback function from ob-
Pror distributed system testing, however, the
esented today by only black-box tools that
fiter and exploit any knowledge of the system’s
buide the search for bugs.

George Pirlea
National University of Singapore
Singapore
gpirlea@comp.nus.edu.sg

Ilya Sergey
National University of Singapore
Singapore
ilya@nus.edu.sg

are generated in a purely random fashion, or it can be guided by
knowledge of the program’s internal structure (white-box). The
most popular fuzzers are grey-box, where the search is guided by
run-time observations of program behaviour, collected, as tests
execute, for artefacts instrumented at compile time. Thanks to the
ease of its deployment and use, grey-box fuzzing is the state-of-the-
practice for automatically discovering bugs in sequential programs.

A common approach to finding bugs in distributed systems
in practice is stress-testing, in which the system is subjected to

Why is conformance hard?

Engineers
implementing such protocols face the same subtleties and,
worse, must improvise to fill in gaps between abstract protocol
descriptions and practical constraints, e.g., that real logs cannot
grow without bound.

IronFleet: Proving Practical Distributed Systems Correct

Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch,
Bryan Parno, Michael L. Roberts, Srinath Setty, Brian Zill

Microsoft Research

Why is conformance hard?

* Medium of specification
» Fully-fledged protocols are large and complex

e Basic Raft: 485 LoC * Defines how the variables may transition.

i \in Server : Restart(i)

Next == /\ \/

* TLC-optimized Raft: 653 LoC \/
e Raft with reconfiguration: 1083 LoC \/

\/
\/
\/
\/
\/
\/
\/

".‘ *x*

\E
\E
\E
\E
\E
\E
\E
\E
\E
\E

i \in Server : Timeout(i)

i,j \in Server : RequestVote(i, Jj)

i \in Server : Becomeleader(i)

i \in Server, v \in Value : ClientRequest(i, v)
i \in Server : AdvanceCommitIndex(i)

i,j \in Server : AppendEntries(i, j)

m \in DOMAIN messages :
m \in DOMAIN messages :
m \in DOMAIN messages :

Receive(m)
DuplicateMessage(m)
DropMessage(m)

History variable that tracks every log ever:

/\ alllLogs' = alllLogs \cup {log[i] : i \in Server}

 State machines (TLA*) become harder to extend as they grow

https://github.com/ongardie/raft.tla
https://github.com/Vanlightly/raft-tlaplus/blob/main/specifications/standard-raft/Raft.tla
https://github.com/Vanlightly/raft-tlaplus/blob/main/specifications/standard-raft/RaftWithReconfigAddRemove.tla

Why is conformance hard?

* Medium of specification

» Fully-fledged protocols are large and complex
* Basic Raft: 485 LoC
e TLC-optimized Raft: 653 LoC
e Raft with reconfiguration: 1083 LoC
» State machines (TLA*) become harder to extend as they grow
* PlusCal solves some problems, but is not used much in practice
* 25% of protocols in github.com/tlaplus/Examples

The PlusCal Algorithm Language

https://github.com/ongardie/raft.tla
https://github.com/Vanlightly/raft-tlaplus/blob/main/specifications/standard-raft/Raft.tla
https://github.com/Vanlightly/raft-tlaplus/blob/main/specifications/standard-raft/RaftWithReconfigAddRemove.tla

Why is conformance hard?

* Implementations are large and complex
* Real-world Raft: etcd, 20k LoC, with concurrency, 1/0, etc.
* Implementation bugs can compromise protocol guarantees

* Lack of lightweight tools for justifying parts of the implementation and
supporting automated checks

Challenges Contributions

Underspecification due to 1. Choreographic PlusCal
difficulty of extending large
specifications 2. Practical monitoring using

existing TLA+ specifications
Conformance of real-world
consensus implementations

Choreographic TLC, TLAPS, Apalache
——— PlusCal ——— TLAY
Pluscal Monitoring

Two-phase commit

A correct atomic commit protocol

1. C > TC: “gol”

Client C % 2. TC = A, B: “prepare!”
Okay = [1 ” “ ”
- g | T 3. A,B - TC: vote ‘yes”or ‘no
Coordinator TC i L.
Lﬂ 4. TC - A, B: “commit!” or “abort!”
— TC sends commit if both say yes
— TC sends abort if either say no

w L‘E 5. TC - C: “okay” or ‘failed”
Bank A B
« A, B commit on receipt of commit
message

https://web.kaust.edu.sa/Faculty/MarcoCanini/classes/CS240/F19/docs/L10-2pc.pdf

wo-phase commit in PlusCal

process (C \in coordinators)
variables temp = participants,
aborted = FALSE; {
while (temp /= {}) {
with (r \in temp) {
Send(self, r, "prepare");

temp := temp \ {r};
LA H
temp := participants;
while (temp /= {} \/ aborted) { process (P \in participants) {
with (r \in temp) { Receive (coord, self, "prepare");
either { either {
Receive(r, self, "prepared"); psend:
} or { Send (self, coord, "prepared");
Receive(r, self, "abort"); } or {
;borted := TRUE; Send(self, coord, "abort");
temp := temp \ {r}; i;ther {
' } X Receive (coord, self, "commit");
if (aborted) {, . Send (self, coord, "committed");
temp := participants; } or {

while (temp /= {}) {
with (r \in temp) {
Send (coord, r, "abort");

Receive (coord, self, "abort");
Send (self, coord, "aborted");

temp := temp \ {r}; L
Ik
temp := participants;

while (temp /= {}) {
with (r \in temp) {
Receive(r, coord, "aborted");

temp := temp \ {r};
} 3
} else {
temp := participants;

while (temp /= {}) {
with (r \in temp) {
Send (coord, r, "commit");

temp := temp \ {r};
} 3
temp := participants;

while (temp /= {}) {
with (r \in temp) {
Receive(r, coord, "committed");
temp := temp \ {r};

}r 3

Two-phase commit in PlusCal

process (C \in coordinators)
variables temp = participants,
aborted = FALSE; {
while (temp /= {}) {
with (r \in temp) {
Send(self, r, "prepare");
temp := temp \ {r};
LA H
temp := participants;
while (temp /= {} \/ aborted) {
with (r \in temp) {
either {
Receive(r, self, "prepared");
} or {
Receive(r, self, "abort");
aborted := TRUE;
};
temp := temp \ {r};
LA H
if (aborted) {
temp := participants;
while (temp /= {}) {
with (r \in temp) {
Send (coord, r, "abort");

temp := temp \ {r};
Ik
temp := participants;

while (temp /= {}) {
with (r \in temp) {
Receive(r, coord, "aborted");

temp := temp \ {r};
} 3
} else {
temp := participants;

while (temp /= {}) {
with (r \in temp) {
Send (coord, r, "commit");
temp := temp \ {r};
}}
temp := participants;
while (temp /= {}) {
with (r \in temp) {
Receive(r, coord, "committed");
temp := temp \ {r};
}r1r}

process (P \in participants) {

Receive (coord,

self,

"prepare")

either {
psend:

Send (self, coord, "prepared")
} or A

Send (self, coord, "abort");

}

either {

Receive (coord,
Send (self,
or {
Receive (coord,
Send (self,
}

coord,

coord,

self,

self, "abort")
"aborted") ;

-

"commit")
"committed")

.
3

-

Two-phase commit in PlusCal

process (C \in coordinators)
variables temp = participants,
aborted = FALSE; {
while (temp /= {}) {

with (r \in temp) { process (P \in participants) {
Send(self, r, "prepare"); — Receive (coord, self, "prepare");
temp := temp \ {r}; either {
Y}k psend:
temp := participants; Send (self, coord, "prepared");
while (temp /= {} \/ aborted) { } or {
with (r \in temp) { Send (self, coord, "abort");
either { };
?ezjlie(r, self, "prepared"); either {
Receive (r, self, "abort"); Receive (coord, self, "commit");
aborted := TRUE; Send (self, coord, "committed");
}; }oor o
temp := temp \ {r}; Receive (coord, self, "abort");
} o} Send (self, coord, "aborted");
if (aborted) { }
temp := participants;

while (temp /= {}) {
with (r \in temp) {

Send (coord, r, "abort");
[F S p— P [e a— \ 1.

Two-phase commit

A correct atomic commit protocol

1. C > TC: “gol”

Client C % 2. TC = A, B: “prepare!”
Okay = é ” @ ”
- g | T 3. A,B - TC: vote ‘yes”or ‘no
Coordinator TC
w 4. TC - A, B: “commit!” or “abort!”
— TC sends commit if both say yes
] : — TC sends abort if either say no
W w 5. TC - C: “okay” or ‘failed”
Bank A B

« A, B commit on receipt of commit
message

https://web.kaust.edu.sa/Faculty/MarcoCanini/classes/CS240/F19/docs/L10-2pc.pdf

Choreographic PlusCal: choreography

choreography K/
(P \in participants),
(C \in coordinators) {

A correct atomic commit protocol

all (p \in participants) {

1. C->TC: “goV” Transmit (coord, p, "prepare");
. either {
Client C 2. TC - A, B: “prepare!” Transmit (p, coord, "prepared");
TMGy }oor {
Transacon | 3. A,B~> TC: vote ‘yes”or ‘no Transmit (p, coord, "aborted");
Coordinator TC
w 4. TC > A, B: “commit!” or “abort!” . I
— TC sends commit if both say yes if (aborted) {
) i — TC sends abort if either say no all (p \in participants) {
W L‘U Transmit (coord, p, "abort");
5. TC - C: ‘okay” or ‘failed”) Transmit (p, coord, "aborted");
Bank A B
. .) } else {
* A, B commit on receipt of commit all (p \in participants) {
message . " A
Transmit (coord, p, "commit");
Transmit (p, coord, "committed");

}r 3

Choreographic PlusCal: all

process (C \in coordinators)
variables temp = participants,
aborted = FALSE; {
while (temp /= {}) {
with (r \in temp) {
Send(self, r, "prepare");
temp := temp \ {r};

| Encoding a
multicast

Y ¥

temp := participants;

while (temp /= {} \/ aborted) {
with (r \in temp) {

either {
Receive(r, self, "prepared");
} or {
Receive(r, self, "abort");
aborted := TRUE;
};
temp := temp \ {r};

} 1

if (aborted) {
temp := participants;

while (temp /= {}) {
WithA(r \in temp) {

AN

all (p \in participants) {

Transmit (coord, p, "prepare");
either {
Transmit (p, coord, "prepared");
} or {
Transmit (p, coord, "aborted");
cancel "phasel";
} o}

Choreographic PlusCal: task and cancel

process (C \in coordinators)
variables temp = participants,
aborted = FALSE; {
while (temp /= {}) {
with (r \in temp) {
Send(self, r, "prepare");
temp := temp \ {r};
} o}
temp := participants;
while (temp /= {} \/ aborted) {
with (r \in temp) {
either {
Receive (r, self, "prepared
} or {

Receive(r, self, "abort");

aborted := TRUE;
}; T

temp := temp \ {r};
I
if (aborted) {
temp := participants;

while (temp /= {}) {
WithA(r \in temp) {

task coordinators "phasel" {
$ all (p \in participants) {
Transmit (coord, p, "prepare");
either {

Transmit (p, coord, "prepared");
} or {

Transmit (p, coord, "aborted");

; cancel "phasel";
/}};
Stop if

participant
aborts

process (C \in coordinators)
variables temp = participants,
aborted = FALSE; {
while (temp /= {}) {
with (r \in temp) {
Send (self, r, "prepare");
temp := temp \ {r};
Pk
temp := participants;
while (temp /= {} \/ aborted) {
with (r \in temp) {

either {
Receive(r, self, "prepared");
} or {
Receive(r, self, "abort");
aborted := TRUE;
};
temp := temp \ {rl};

} o}

if (aborted) {
temp := participants;

while (temp /= {}) {
with (r \in temp) {

Send (coord, r, "abort");
temp := temp \ {r};

I

temp := participants;

while (temp /= {}) {
with (r \in temp) {

Receive(r, coord, "aborted");
temp := temp \ {rl};
}}
} else {
temp := participants;

while (temp /= {}) {
with (r \in temp) {

Send(coord, r, "commit");
temp := temp \ {rl};

})

temp := participants;

while (temp /= {}) {
with (r \in temp) {
Receive(r, coord, "committed");
temp := temp \ {r};

}rr}

Choreographic PlusCal

process (P \in participants) {
Receive (coord, self, "prepare");
either {
psend:
Send(self, coord, "prepared");
} or {

Send (self, coord, "abort");

};
either {
Receive (coord, self, "commit");
Send (self, coord, "committed");
} or {
Receive (coord, self, "abort");

Send (self, coord, "aborted");
} 2

choreography
(P \in participants),
(C \in coordinators) {
task coordinators "phasel" {
all (p \in participants) {
Transmit (coord, p, "prepare");
either {
Transmit (p, coord, "prepared");
} or {
Transmit (p, coord, "aborted");
cancel "phasel";
} X
if (aborted) {
all (p \in participants) {
Transmit (coord, p, "abort");
Transmit (p, coord, "aborted");
}
} else {
all (p \in participants) {
Transmit (coord, p, "commit");
Transmit (p, coord, "committed");

} r}

Choreographic PlusCal

Protocol Ch. PlusCal TLA™
Two-phase commit [23] 23 66
Non-blocking atomic commit [35] 36 96
Raft leader election [32] 46 186

Table 1: Relative specification sizes (LoC)

choreography
(P \in participants),
(C \in coordinators) {
task coordinators "phasel" {
all (p \in participants) {
Transmit (coord, p, "prepare");

either {
Transmit (p, coord, "prepared");
} or {
Transmit (p, coord, "aborted");
cancel "phasel";
} X

if (aborted) {
all (p \in participants) {
Transmit (coord, p, "abort");
Transmit (p, coord, "aborted");

}
} else {
all (p \in participants) {
Transmit (coord, p, "commit");
Transmit (p, coord, "committed");

} r}

Projection & monitoring

choreography
(P \in participants),
(C \in coordinators) {
task coordinators "phasel" {
all (p \in participants) {
Transmit (coord, p, "prepare");
either {
Transmit (p, coord, "prepared");
} or {
Transmit (p, coord, "aborted");
cancel "phasel";
} o}
if (aborted) {
all (p \in participants) {
Transmit (coord, p, "abort");
Transmit (p, coord, "aborted");
}
} else {
all (p \in participants) {
Transmit (coord, p, "commit");
Transmit (p, coord, "committed");

} r 1

process (C \in coordinators)
variables temp = participants,
aborted = FALSE; {
while (temp /= {}) {
with (r \in temp) {
Send(self, r, "prepare");
temp := temp \ {r};
LA
temp := participants;
while (temp /= {} \/ aborted) {
with (r \in temp) {

either {
Receive(r, self, "prepared");
} or {
Receive (r, self, "abort");
aborted := TRUE;
};
temp := temp \ {r};

} 3}

if (aborted) {
temp := participants;

while (temp /= {}) {
with (r \in temp) {

Send (coord, r, "abort");
temp := temp \ {r};

L

temp := participants;

while (temp /= {}) {
with (r \in temp) {

Receive(r, coord, "aborted");
temp := temp \ {r};
}}
} else {
temp := participants;

while (temp /= {}) {
with (r \in temp) {

Send(coord, r, "commit");
temp := temp \ {r};

})

temp := participants;

while (temp /= {}) {
with (r \in temp) {
Receive(r, coord, "committed");
temp := temp \ {r};

}rr}

process (P \in participants) {
Receive (coord, self, "prepare");
either {
psend:
Send(self, coord, "prepared");
} or {
Send (self, coord, "abort");

};

either {
Receive (coord, self, "commit");
Send (self, coord, "committed");
} or {
Receive (coord, self, "abort");

Send (self, coord, "aborted");
3}

Projection & monitoring

* Choreographic languages/logics (e.g. session types) have a projection
operation to derive local programs for verification, monitoring, and/or
code generation

project(a - b) ={!b,?a}

* We define projection across both Choreographic PlusCal and TLAY
* Integrates with existing toolchain
* Monitoring works for vanilla TLA* as well (assuming some syntactic conditions)

Ch. PlusCal

PlusCal

TLA*

Multiple
TLAY
models

Projection & monitoring

VARIABLES v choreography (a \in A, b \in B) {
inbox, outbox Transmit (a, b, v, "msg")

}

VARIABLES v process (a \in A) { process (b \in B) {
' Send (b, "msg") v = Receive (a)

} }

inbox, outbox

inbox, outbox /\ Send (b, "msg") /\ v'[self] := Receive(a)
/\ UNCHANGED <<inbox, v>> /\ UNCHANGED <<outbox>>

VARIABLES inbox, outbox VARIABLES v, inbox, outbox
A send(b) == B send(a) ==

/\ Send (b, "msg”) /\ v := Receive (a)

/\ UNCHANGED <<inbox>> /\ UNCHANGED <<outbox>>

Ch. PlusCal § (Sec. 3) — ~» — {7,...}

. . |

I (Sec. 4) =

v |
Ex. PlusCal S ~ > {7,...}

|

T (Sec. -

Y

PlusCal S ~ > {1,...}

\

pcal.trans [22]

4

TLA™* Inv. > TLC

\

Monitor

Comp.
Y

Instr. —> Test

Fig. 4: Overview

Monitoring

300
Choreographic PlusCal

The PlusCal Algorithm Language

= A\

Checking a Model

- - TLA+ Proof System

5% O

Monitoring

* Instrument system to collect traces

e Refinement mapping
* Function from concrete to abstract state
* Abstracts away details, reinterprets behavior in terms of the model’s
* May require auxiliary state to define
* Deep embedding of TLA+ formulae in Go

type TLA interface {
String () string
MarshalJSON () ([]byte, error)

}

Monitoring

* Instrument system to collect traces
e Refinement mapping

* Linearization points
* Program locations where state changes become visible
e Can vary significantly between implementations
* May require auxiliary state to define

Monitoring

* Instrument system to collect traces

 Validate behaviors
* Model-based trace checking [Pressler 18, Davis 20]

* Compile model into monitor and validate on the fly

» Offline, also online
 Scalable, possible to enable in production/fuzzing

Project Protocol LoC Overhead
vadiminshakov/committer 2PC 3032 19% (5 ms)
etcd-io/raft Raft leader election 21,064 2% (4 ms)

Table 2: Monitor overhead

Conclusion

* Choreographic PlusCal + monitoring

 What's in the paper?
* Details, formalization, soundness of new features and projection

* Future work
* Liveness: runtime verification
* New classes of protocols, e.g. role-parametric

* User-provided refinement mapping and linearization points are all trusted —
statically check

TINUS

National University
of Singapore

Thank youl!

Ch. PlusCal § (Sec. 3) — ~ — {7,...}

[(Sec. 4) %
e N S Protocol Conformance with
|7 % Choreographic PlusCal
PlusCal S > {r,..}

peal.trans [22] Darius Foo, Andreea Costea, and Wei-Ngan Chin

Inv. —— TLC National University of Singapore
{dariusf,andreeac,chinwn}@comp.nus.edu.sg

Y
TLAt
Comp. (Sec. 6)

Instr. —> Test
Fig. 4: Overview

4
Monitor

https://github.com/dariusf/tlaplus/tree/cpcal

https://github.com/dariusf/tlaplus/tree/cpcal

Monitoring

func psend(prev state, this state, self TLA) bool {
if !(reflect.DeepEqual(prev.pc, Str("psend"))) {
return false

}
// ... outbox check elided

if !(reflect.DeepEqual(this.pc, Str("Lbl_2"))) {
return false

}

return true

+
Fig. 6: Go rendering of psend in generated monitor

Specification with TLA*

* Defines how the variables may transition.
Next == /\ \/ \E i \in Server : Restart(i)
{\/ \E i \in Server : Timeout(i) }
\/ \E 1i,j \in Server : RequestVote(i, 3j)
\/ \E 1 \in Server : Becomeleader(i)
\/ \E 1 \in Server, v \in Value : ClientRequest(i, v)
\/ \E 1 \in Server : AdvanceCommitIndex(i)
\/ \E i,3j \in Server : AppendEntries(i, j)
\/ \E m \in DOMAIN messages : Receive(m)
\/ \E m \in DOMAIN messages : DuplicateMessage(m)
\/ \E m \in DOMAIN messages : DropMessage(m)
* History variable that tracks every log ever:
/\ alllLogs' = alllLogs \cup {logli] : i \in Server}

Specification with TLA?

Figuring out how actions are related is tedious, e.g. sequentially

* Server i1 times out and starts a new election.
Timeout(i) == /\ state[i] \in {Follower, Candidate} * Candidate i sends j a RequestVote request.

/\ ktate- = [state EXCEPT ![i] = Candidate]] RequesEVote(i, j) =]
/\|state[i] = Candidate

/\ j \notin votesResponded[i]

/\ currentTerm' = [currentTerm EXCEPT ![i] = currentTerm[i] + 1]

* Most implementations would probably just set the local vote

: : S /\ Send([mtype |-> RequestVoteRequest,

* atomically, but messaging localhost for it is weaker. .
; - _ mterm |-> currentTerm[i],

/\ votedFor' = [votedFor EXCEPT ![i] = Nil] . mlastLogTerm |-> LastTerm(log[i]),
/\ votesResponded' = [votesResponded EXCEPT ![1i] = {}] mlastLogIndex |-> Len(log[il),
/\ votesGranted' = [votesGranted EXCEPT ![i] = {}] msource |-> i,
/\ voterLog' = [voterLog EXCEPT ![i] = [j \in {} |-> <<>>]] mdest |-> 1)
/\ UNCHANGED <<messages, leaderVars, logVars>> /\ UNCHANGED <<serverVars, candidateVars, leaderVars, logVars>>

... must also check if other actions are enabled in Candidate state, else nondeterminism

Specification with TLA?

Figuring out how actions are related is tedious, e.g. send-receive

* Server i receives a RequestVote request from server j with

* m.mterm <= currentTerm[i].

HandleRequestVoteRequest(i, j,| m)

LET logOk == \/ m.mlastLogTerm > LastTerm(log[i])
\/ /\ m.mlastLogTerm = LastTerm(log[i])
/\ m.mlastLogIndex >= Len(log[i])
grant == /\ m.mterm = currentTerm[i]

/\ logOk

/\ votedFor[i] \in {Nil, j}
IN /\ m.mterm <= currentTerm[i]

/\ \/ grant

/\ votedFor' = [votedFor EXCEPT ![i] = j]

\/ ~grant /\ UNCHANGED votedFor

* the proof. It

mlog |

msource |-
I

mdest
\ m)

-2

>
>

/’7\ Reply([mtype |-> RequestVoteResponse, 4“\
mterm |-> currentTerm[i],
mvoteGranted |-> grant,

* mlog is used just for the ‘elections' history variable for

would not exist in a real implementation.
log[il],
i,

il, A"/

/\ UNCHANGED <<state, currentTerm, candidateVars, leaderVars, logVars>>

* Candidate i1 sends j a RequestVote request.

RequestVote(i, j) ==
/\ state[i] = Candidate

/\ j \notin votesResponded[i]

/\ Send([mtype | =>
mterm | =>
mlastLogTerm |->
mlastLogIndex |->
msource |=>
mdest | =>

/\ UNCHANGED <<serverVars,

RequestVoteRequest,

currentTerm[i],

LastTerm(logl[il),

Len(logl[il]),

i,

il)

candidateVars, leaderVars, logVars>>

Must do this repeatedly to get a sense
of the flow of the protocol

Specification with TLA?

Non-compositionality

* Add a message to the bag of messages.
Send(m) == messages' = WithMessage(m, messages)

* Candidate 1 sends] a RequestVote reguest.
RequestVote(i, j) ==

/\ state[i] = Candidate

/\ j \notin votesResponded[i]

/\ Send([mtype |-> RequestVoteRequest,
mterm |=> currentTerm([1i],
mlastLogTerm |-> LastTerm(log[il]),
mlastLogIndex |-> Len(log[i]),
msource |-> 1,
mdest |=> 3])

/\ UNCHANGED <<serverVars, candidateVars, leaderVars, logVars>>

Must thread state through functions manually

Linking specification to implementation

Many “industrial-grade” unverified protocol implementations...

etcd-io/etcd

Distributed reliable key-value store for the most critical data of a distributed system
W baidu/braft

hti An industrial-erade C++ imnlementation of RAFT concenciis alearithm haced an hrne

Ad | wic
Sta
29(

Add

Tencent/phxpaxos

The Paxos library implemented in C++ that has been used in the WeChat production
environment.

Stars Language

3045 C++

Added by GitHub

Linking specification to implementation

... many specifications as well, but unrelated

List of Examples

No

39

45

a7

57

67

Name

MultiPaxos

Paxos

raft

transaction_commit

Tencent-Paxos

Short description

The abstract
specification of
Generalized Paxos
(Lamport, 2004)

Paxos consensus
algorithm
(Lamport, 1998)

Raft consensus
algorithm (Ongaro,
2014)

Consensus on
transaction
commit (Gray &
Lamport, 2006)

PaxosStore: high-
availability storage
made practical in
WeChat.
Proceedings of the
VLDB
Endowment(Zheng
etal., 2017)

Spec's
authors

Giuliano
Losa

Leslie
Lamport

Diego
Ongaro

Leslie
Lamport

Xingchen
Yi;
Hengfeng
Wei

TLAPS
Proof

TLC
Check

v

59

62

63

69

75

77

83

TwoPhase

Misra Reachability
Algorithm

Loop Invariance

Paxos

Lock-Free Set

ParallelRaft

Raft (with cluster
changes)

Two-phase
handshaking

Misra Reachability
Algorithm

Loop Invariance

Paxos

PlusCal spec of a
lock-Free set used
by TLC

A variant of Raft

Raft with cluster
changes, and a
version with
Apalache type
annotations but no
cluster changes

Leslie
Lamport,
Stephan
Merz

Leslie
Lamport

Leslie
Lamport

Markus
Kuppe

Xiaosong
Gu,
Hengfeng
Wei, Yu
Huang

George
Pirlea,
Darius
Foo,
Brandon
Amos,
Huanchen
Zhang,
Daniel
Ricketts

Nat

Int, Seq, FiniteS
TLC, TLAPS,
Naturalsinductic

Int, Seq, FiniteS
TLC, TLAPS,

SequenceTheor
Naturalsinductic

Int, FiniteSets

Sequences,
FiniteSets, Intec
TLC

Integers, FiniteS
Sequences,
Naturals

Functions,
SequencesExt,
FiniteSetsExt,
TypedBags

