
Protocol Conformance with
Choreographic PlusCal

Darius Foo, Andreea Costea, and Wei-Ngan Chin
National University of Singapore

17th International Symposium on Theoretical Aspects of Software Engineering
6 July 2023

“transactions
shouldn’t be
forgotten”

Distributed Systems

“transactions
shouldn’t be
forgotten”

Distributed Systems

Crash failure
Arbitrary message delays
(asynchronous network)

Message loss,
duplication,
reordering

??
Partitions

Restarts

Distributed Systems

Crash failure

Message loss,
duplication,
reordering

??
Partitions

⊨ ϕ
Validity

Agreement
Integrity

Termination
Fault tolerance

Arbitrary message delays
(asynchronous network) Restarts

??

Distributed Systems

Crash failure

Message loss,
duplication,
reordering

??
Partitions

⊨ϕ
Consensus protocols

Quorums

Logs
Leader election

Reconfiguration

Specifications Verification

⊨
Conformance

Arbitrary message delays
(asynchronous network) Restarts

How hard is it to implement a protocol
correctly?

(2014)

How hard is it to implement a protocol
correctly?

… 137 more implementations

How hard is it to implement a protocol
correctly?

8 bugs

(2015)

How hard is it to implement a protocol
correctly?

https://pusher.com/blog/fuzz-testing-distributed-systems-with-quickcheck/

14 bugs

(2016)

How hard is it to implement a protocol
correctly?

22 bugs
10 CVEs

(2023)

Why is conformance hard?

Why is conformance hard?

• Medium of specification
• Fully-fledged protocols are large and complex

• Basic Raft: 485 LoC
• TLC-optimized Raft: 653 LoC
• Raft with reconfiguration: 1083 LoC

• State machines (TLA+) become harder to extend as they grow

https://github.com/ongardie/raft.tla
https://github.com/Vanlightly/raft-tlaplus/blob/main/specifications/standard-raft/Raft.tla
https://github.com/Vanlightly/raft-tlaplus/blob/main/specifications/standard-raft/RaftWithReconfigAddRemove.tla

Why is conformance hard?

• Medium of specification
• Fully-fledged protocols are large and complex

• Basic Raft: 485 LoC
• TLC-optimized Raft: 653 LoC
• Raft with reconfiguration: 1083 LoC

• State machines (TLA+) become harder to extend as they grow
• PlusCal solves some problems, but is not used much in practice

• 25% of protocols in github.com/tlaplus/Examples

https://github.com/ongardie/raft.tla
https://github.com/Vanlightly/raft-tlaplus/blob/main/specifications/standard-raft/Raft.tla
https://github.com/Vanlightly/raft-tlaplus/blob/main/specifications/standard-raft/RaftWithReconfigAddRemove.tla

Why is conformance hard?

• Implementations are large and complex
• Real-world Raft: etcd, 20k LoC, with concurrency, I/O, etc.
• Implementation bugs can compromise protocol guarantees
• Lack of lightweight tools for justifying parts of the implementation and

supporting automated checks

Challenges Contributions

1. Underspecification due to
difficulty of extending large
specifications

2. Conformance of real-world
consensus implementations

1. Choreographic PlusCal

2. Practical monitoring using
existing TLA+ specifications

TLA+PlusCal
TLC, TLAPS, Apalache

Monitoring
Choreographic

Pluscal

Two-phase commit

https://web.kaust.edu.sa/Faculty/MarcoCanini/classes/CS240/F19/docs/L10-2pc.pdf

Two-phase commit in PlusCal

Two-phase commit in PlusCal

Two-phase commit in PlusCal

…

Two-phase commit

https://web.kaust.edu.sa/Faculty/MarcoCanini/classes/CS240/F19/docs/L10-2pc.pdf

Choreographic PlusCal: choreography

Choreographic PlusCal: all

Encoding a
multicast

Choreographic PlusCal: task and cancel

Stop if
participant

aborts

Choreographic PlusCal

Choreographic PlusCal

Projection & monitoring

Projection & monitoring

• Choreographic languages/logics (e.g. session types) have a projection
operation to derive local programs for verification, monitoring, and/or
code generation

• We define projection across both Choreographic PlusCal and TLA+

• Integrates with existing toolchain
• Monitoring works for vanilla TLA+ as well (assuming some syntactic conditions)

𝑝𝑟𝑜𝑗𝑒𝑐𝑡 𝑎 → 𝑏 = {! 𝑏, ? 𝑎}

Projection & monitoring

process (a \in A) {
 Send(b, "msg")
}

process (b \in B) {
 v = Receive(a)
}

A_send(self, b) ==
 /\ Send(b, "msg")
 /\ UNCHANGED <<inbox, v>>

B_send(self, a) ==
 /\ v'[self] := Receive(a)
 /\ UNCHANGED <<outbox>>

choreography (a \in A, b \in B) {
 Transmit(a, b, v, "msg")
}

VARIABLES v,
inbox, outbox

VARIABLES inbox, outbox
A_send(b) ==
 /\ Send(b, "msg”)
 /\ UNCHANGED <<inbox>>

VARIABLES v, inbox, outbox
B_send(a) ==
 /\ v := Receive(a)
 /\ UNCHANGED <<outbox>>

TLA+

Multiple
TLA+
models

Ch. PlusCal

PlusCal VARIABLES v,
inbox, outbox

VARIABLES v,
inbox, outbox

Monitoring

⊨ϕ

Choreographic PlusCal

⊨

⊨

Monitoring

• Instrument system to collect traces
• Refinement mapping

• Function from concrete to abstract state
• Abstracts away details, reinterprets behavior in terms of the model’s
• May require auxiliary state to define
• Deep embedding of TLA+ formulae in Go

type TLA interface {
 String() string
 MarshalJSON() ([]byte, error)
}

Monitoring

• Instrument system to collect traces
• Refinement mapping
• Linearization points

• Program locations where state changes become visible
• Can vary significantly between implementations
• May require auxiliary state to define

Monitoring

• Instrument system to collect traces
• Validate behaviors
• Model-based trace checking [Pressler 18, Davis 20]
• Compile model into monitor and validate on the fly

• Offline, also online
• Scalable, possible to enable in production/fuzzing

Conclusion

• Choreographic PlusCal + monitoring
• What’s in the paper?
• Details, formalization, soundness of new features and projection

• Future work
• Liveness: runtime verification
• New classes of protocols, e.g. role-parametric
• User-provided refinement mapping and linearization points are all trusted –

statically check

Thank you!

https://github.com/dariusf/tlaplus/tree/cpcal

https://github.com/dariusf/tlaplus/tree/cpcal

Monitoring

Specification with TLA+

… must also check if other actions are enabled in Candidate state, else nondeterminism

Figuring out how actions are related is tedious, e.g. sequentially

Specification with TLA+

Figuring out how actions are related is tedious, e.g. send-receive

Specification with TLA+

Must do this repeatedly to get a sense
of the flow of the protocol

Must thread state through functions manually

Non-compositionality

Specification with TLA+

Linking specification to implementation

Many “industrial-grade” unverified protocol implementations…

Linking specification to implementation

… many specifications as well, but unrelated

