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How hard is it to implement a protocol 
correctly?

https://pusher.com/blog/fuzz-testing-distributed-systems-with-quickcheck/
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How hard is it to implement a protocol 
correctly?

22 bugs
10 CVEs

(2023)
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Why is conformance hard?

• Medium of specification
• Fully-fledged protocols are large and complex

• Basic Raft: 485 LoC
• TLC-optimized Raft: 653 LoC
• Raft with reconfiguration: 1083 LoC

• State machines (TLA+) become harder to extend as they grow

https://github.com/ongardie/raft.tla
https://github.com/Vanlightly/raft-tlaplus/blob/main/specifications/standard-raft/Raft.tla
https://github.com/Vanlightly/raft-tlaplus/blob/main/specifications/standard-raft/RaftWithReconfigAddRemove.tla
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• Medium of specification
• Fully-fledged protocols are large and complex

• Basic Raft: 485 LoC
• TLC-optimized Raft: 653 LoC
• Raft with reconfiguration: 1083 LoC

• State machines (TLA+) become harder to extend as they grow
• PlusCal solves some problems, but is not used much in practice

• 25% of protocols in github.com/tlaplus/Examples

https://github.com/ongardie/raft.tla
https://github.com/Vanlightly/raft-tlaplus/blob/main/specifications/standard-raft/Raft.tla
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Why is conformance hard?

• Implementations are large and complex
• Real-world Raft: etcd, 20k LoC, with concurrency, I/O, etc.
• Implementation bugs can compromise protocol guarantees
• Lack of lightweight tools for justifying parts of the implementation and 

supporting automated checks



Challenges Contributions

1. Underspecification due to 
difficulty of extending large 
specifications

2. Conformance of real-world 
consensus implementations

1. Choreographic PlusCal

2. Practical monitoring using 
existing TLA+ specifications

TLA+PlusCal
TLC, TLAPS, Apalache

Monitoring
Choreographic

Pluscal



Two-phase commit

https://web.kaust.edu.sa/Faculty/MarcoCanini/classes/CS240/F19/docs/L10-2pc.pdf
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Two-phase commit

https://web.kaust.edu.sa/Faculty/MarcoCanini/classes/CS240/F19/docs/L10-2pc.pdf
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Projection & monitoring

• Choreographic languages/logics (e.g. session types) have a projection 
operation to derive local programs for verification, monitoring, and/or 
code generation

• We define projection across both Choreographic PlusCal and TLA+

• Integrates with existing toolchain
• Monitoring works for vanilla TLA+ as well (assuming some syntactic conditions)

𝑝𝑟𝑜𝑗𝑒𝑐𝑡 𝑎 → 𝑏 = {! 𝑏, ? 𝑎}



Projection & monitoring

process (a \in A) {
  Send(b, "msg")
}

process (b \in B) {
  v = Receive(a)
}

A_send(self, b) ==
  /\ Send(b, "msg")
  /\ UNCHANGED <<inbox, v>>

B_send(self, a) ==
  /\ v'[self] := Receive(a)
  /\ UNCHANGED <<outbox>>

choreography (a \in A, b \in B) {
  Transmit(a, b, v, "msg")
}

VARIABLES v, 
inbox, outbox

VARIABLES inbox, outbox
A_send(b) ==
  /\ Send(b, "msg”)
  /\ UNCHANGED <<inbox>>

VARIABLES v, inbox, outbox
B_send(a) ==
  /\ v := Receive(a)
  /\ UNCHANGED <<outbox>>

TLA+

Multiple 
TLA+ 
models

Ch. PlusCal

PlusCal VARIABLES v, 
inbox, outbox

VARIABLES v, 
inbox, outbox
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Monitoring

• Instrument system to collect traces
• Refinement mapping

• Function from concrete to abstract state
• Abstracts away details, reinterprets behavior in terms of the model’s
• May require auxiliary state to define
• Deep embedding of TLA+ formulae in Go

type TLA interface {
  String() string
  MarshalJSON() ([]byte, error)
}



Monitoring

• Instrument system to collect traces
• Refinement mapping
• Linearization points

• Program locations where state changes become visible
• Can vary significantly between implementations
• May require auxiliary state to define



Monitoring

• Instrument system to collect traces
• Validate behaviors
• Model-based trace checking [Pressler 18, Davis 20]
• Compile model into monitor and validate on the fly

• Offline, also online
• Scalable, possible to enable in production/fuzzing



Conclusion

• Choreographic PlusCal + monitoring
• What’s in the paper?
• Details, formalization, soundness of new features and projection

• Future work
• Liveness: runtime verification
• New classes of protocols, e.g. role-parametric
• User-provided refinement mapping and linearization points are all trusted – 

statically check



Thank you!

https://github.com/dariusf/tlaplus/tree/cpcal

https://github.com/dariusf/tlaplus/tree/cpcal
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Specification with TLA+



… must also check if other actions are enabled in Candidate state, else nondeterminism

Figuring out how actions are related is tedious, e.g. sequentially

Specification with TLA+



Figuring out how actions are related is tedious, e.g. send-receive

Specification with TLA+

Must do this repeatedly to get a sense 
of the flow of the protocol



Must thread state through functions manually

Non-compositionality

Specification with TLA+



Linking specification to implementation

Many “industrial-grade” unverified protocol implementations…



Linking specification to implementation

… many specifications as well, but unrelated


