
Staged Specification Logic for Verifying 

Higher-Order Imperative Programs

Darius Foo, Yahui Song, Wei-Ngan Chin
FM 2024, Milan, Italy

13 September

1



Challenges: Effectful Higher-order Functions

• Programs today are rife with effectful higher-order functions, but 
(automated) verifier support for them varies greatly
• Pure only, e.g. Dafny, Why3, Cameleer
• Type system guarantees, e.g. Creusot, Prusti
• Interactive, e.g. Iris, CFML, Pulse/Steel (F*)

• Even when they are supported, specifications are often imprecise

• Is there a precise and general way to support effectful higher-order 
functions in automated program verifiers?

2



Motivating Example

• f is effectful: it may have state, 
exceptions, algebraic effects...

• How do we specify foldr in a 
way that allows the following 
client to be verified?

3



(Separation logic) property 
relating suffix of input list 

traversed to result

foldr should not change the list

Some clients may want to operate 
only on certain kinds of lists f must preserve the invariant

4

Specification in Iris

2



The use of abstract properties

• The specification commits to an abstraction of f’s behavior
• This abstraction may not be precise enough for a given client

https://iris-project.org/tutorial-pdfs/iris-lecture-notes.pdf (pg 32)

5

https://iris-project.org/tutorial-pdfs/iris-lecture-notes.pdf


Problem 1: mutating the list

• To specify the list mutation, we would need to state isList l xs’
• Inv xs r tells us nothing about xs’

64



Problem 2: stronger precondition

• This function argument relies on a property concerning intermediate results
• P constrains individual elements only
• Inv tells us about r, but not x
• It’s possible to assume something stronger here (x ≥ 0 ∧ r ≥ 0), but it’s 

awkward in general to decompose the property into two parts
7



• f must return a value to preserve the invariant
• Trying to abstract f’s behavior into a predicate of the underlying logic limits 

expressiveness
• A pure logic (e.g. SMT) cannot abstract over mutation
• Separation logic allows mutation, but not exceptions/effects

Problem 3: effects outside metalogic

8



Why was abstraction needed?

• It is difficult to represent unknown higher-order effectful calls 
precisely in pre/post specifications

• Idea: generalize Hoare triples with ingredients needed

9

Sequencing

(Un)interpreted relation

6

assert/exhale

assume/inhale



Intuition (semantics).

10



Intuition (reasoning)

11



Intuition (reasoning)

12



13

Our solution: staged logic

1. Sequencing and uninterpreted relations
2. Recursive formulae
3. Re-summarization of recursion/lemmas
4. Compaction via biabduction

⟹ Defer abstraction until appropriate

9



14

1. Sequencing and uninterpreted relations

• Uninterpreted relations represent unknown function parameters
• Sequencing allows them to serve as placeholders for effects



15

2. Recursive formulae

• The call to f can be represented directly, without requiring abstraction
• Recursion is used where needed



3. Re-summarization of recursion/lemmas

16

• Recovering abstraction: re-summarization



3. Re-summarization of recursion/lemmas

17

• Recovering abstraction: proving entailments

10



4. Compaction via biabduction

18



4. Compaction via biabduction

19



Problem 1: mutating the list

20

• An invariant is not needed to specify the function argument
• We can directly use a shape predicate, with value described by a 

pure function

12



Problem 2: stronger precondition

21

• We can directly use a predicate on 𝑙 to require that all suffix-sums 
are positive



• An exception can be modelled as an interpreted relation 
(more in ICFP 2024)

• We do not delegate effects to the underlying separation logic

Problem 3: effects outside metalogic

22



Implementation & Evaluation

• 5K LoC, OCaml 5
• Small but representative 

examples
• Reasonably low 

verification time
• 0.37 spec : code
• Feasibility & increased 

expressiveness over 
existing systems

23



• Staged logic for effectful higher-order 
programs

1. Sequencing and uninterpreted relations
2. Recursive formulae
3. Re-summarization of recursion/lemmas
4. Compaction via biabduction
⟹ Defer abstraction until appropriate

• Heifer – a new automated verifier
• https://github.com/hipsleek/heifer

24

Conclusion

*Higher-order Effectful Imperative Function Entailments and Reasoning

Thanks for 
listening!

https://github.com/hipsleek/heifer

	Slide 1: Staged Specification Logic for Verifying Higher-Order Imperative Programs
	Slide 2: Challenges: Effectful Higher-order Functions
	Slide 3: Motivating Example
	Slide 4: Specification in Iris
	Slide 5: The use of abstract properties
	Slide 6: Problem 1: mutating the list
	Slide 7: Problem 2: stronger precondition
	Slide 8: Problem 3: effects outside metalogic
	Slide 9: Why was abstraction needed?
	Slide 10: Intuition (semantics).
	Slide 11: Intuition (reasoning)
	Slide 12: Intuition (reasoning)
	Slide 13: Our solution: staged logic
	Slide 14: 1. Sequencing and uninterpreted relations
	Slide 15: 2. Recursive formulae
	Slide 16: 3. Re-summarization of recursion/lemmas
	Slide 17: 3. Re-summarization of recursion/lemmas
	Slide 18: 4. Compaction via biabduction
	Slide 19: 4. Compaction via biabduction
	Slide 20: Problem 1: mutating the list
	Slide 21: Problem 2: stronger precondition
	Slide 22: Problem 3: effects outside metalogic
	Slide 23: Implementation & Evaluation
	Slide 24: Conclusion
	Slide 25
	Slide 27: 4. Compaction via biabduction
	Slide 28: 4. Compaction via biabduction
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37: Hoare Rules  with Staged Logics
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42: 1. Sequencing and uninterpreted relations
	Slide 43: 1. Sequencing and uninterpreted relations
	Slide 50: More
	Slide 51: Closures
	Slide 55
	Slide 56: Extending the staged spec logic to algebraic effects 
	Slide 57: Extending the staged spec logic to algebraic effects 
	Slide 58: Extending the staged spec logic to algebraic effects 
	Slide 59
	Slide 60: Automated Temporal Verification for Algebraic Effects
	Slide 61: Algebraic Effects
	Slide 62: User-defined Effects and Handlers 
	Slide 63: User-defined Effects and Handlers 
	Slide 64: Algebraic Effects
	Slide 65: Algebraic Effects
	Slide 66: Algebraic Effects
	Slide 67: Algebraic Effects
	Slide 68: Algebraic Effects
	Slide 69: Algebraic Effects
	Slide 70: Algebraic Effects
	Slide 71: Algebraic Effects
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 91: Cameleer
	Slide 92: Cameleer

