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Challenges: Effectful Higher-order Functions

• Programs today are rife with effectful higher-order functions, but 
(automated) verifier support for them varies greatly
• Pure only, e.g. Dafny, Why3, Cameleer
• Type system guarantees, e.g. Creusot, Prusti
• Interactive, e.g. Iris, CFML, Pulse/Steel (F*)

• Even when they are supported, specifications are often imprecise

• Is there a precise and general way to support effectful higher-order 
functions in automated program verifiers?
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Motivating Example

• f is effectful: it may have state, 
exceptions, algebraic effects...

• How do we specify foldr in a 
way that allows the following 
client to be verified?

3



(Separation logic) property 
relating suffix of input list 

traversed to result

foldr should not change the list

Some clients may want to operate 
only on certain kinds of lists f must preserve the invariant
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Specification in Iris
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The use of abstract properties

• The specification commits to an abstraction of f’s behavior
• This abstraction may not be precise enough for a given client

https://iris-project.org/tutorial-pdfs/iris-lecture-notes.pdf (pg 32)
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Problem 1: mutating the list

• To specify the list mutation, we would need to state isList l xs’
• Inv xs r tells us nothing about xs’
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Problem 2: stronger precondition

• This function argument relies on a property concerning intermediate results
• P constrains individual elements only
• Inv tells us about r, but not x
• It’s possible to assume something stronger here (x ≥ 0 ∧ r ≥ 0), but it’s 

awkward in general to decompose the property into two parts
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• f must return a value to preserve the invariant
• Trying to abstract f’s behavior into a predicate of the underlying logic limits 

expressiveness
• A pure logic (e.g. SMT) cannot abstract over mutation
• Separation logic allows mutation, but not exceptions/effects

Problem 3: effects outside metalogic
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Why was abstraction needed?

• It is difficult to represent unknown higher-order effectful calls 
precisely in pre/post specifications

• Idea: generalize Hoare triples with ingredients needed
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Sequencing

(Un)interpreted relation
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assert/exhale

assume/inhale



Intuition (semantics).
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Intuition (reasoning)
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Intuition (reasoning)
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Our solution: staged logic

1. Sequencing and uninterpreted relations
2. Recursive formulae
3. Re-summarization of recursion/lemmas
4. Compaction via biabduction

⟹ Defer abstraction until appropriate
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1. Sequencing and uninterpreted relations

• Uninterpreted relations represent unknown function parameters
• Sequencing allows them to serve as placeholders for effects
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2. Recursive formulae

• The call to f can be represented directly, without requiring abstraction
• Recursion is used where needed



3. Re-summarization of recursion/lemmas

16

• Recovering abstraction: re-summarization



3. Re-summarization of recursion/lemmas
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• Recovering abstraction: proving entailments
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4. Compaction via biabduction
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4. Compaction via biabduction
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Problem 1: mutating the list
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• An invariant is not needed to specify the function argument
• We can directly use a shape predicate, with value described by a 

pure function
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Problem 2: stronger precondition
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• We can directly use a predicate on 𝑙 to require that all suffix-sums 
are positive



• An exception can be modelled as an interpreted relation 
(more in ICFP 2024)

• We do not delegate effects to the underlying separation logic

Problem 3: effects outside metalogic
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Implementation & Evaluation

• 5K LoC, OCaml 5
• Small but representative 

examples
• Reasonably low 

verification time
• 0.37 spec : code
• Feasibility & increased 

expressiveness over 
existing systems
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• Staged logic for effectful higher-order 
programs

1. Sequencing and uninterpreted relations
2. Recursive formulae
3. Re-summarization of recursion/lemmas
4. Compaction via biabduction
⟹ Defer abstraction until appropriate

• Heifer – a new automated verifier
• https://github.com/hipsleek/heifer
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Conclusion

*Higher-order Effectful Imperative Function Entailments and Reasoning

Thanks for 
listening!

https://github.com/hipsleek/heifer
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