i

National University I M
of Singapore

Milano 2024

Staged Specification Logic for Verifying

Higher-Order Imperative Programs

Darius Foo, Yahui Song, Wei-Ngan Chin
FM 2024, Milan, Italy
13 September

Challenges: Effectful Higher-order Functions

Programs today are rife with effectful higher-order functions, but
(automated) verifier support for them varies greatly

Pure only, e.g. Dafny, Why3, Cameleer
- Type system guarantees, e.g. Creusot, Prusti

Interactive, e.g. Iris, CFML, Pulse/Steel (F*)

Even when they are supported, specifications are often imprecise

Is there a precise and general way to support effectful higher-order
functions in automated program verifiers?

Motivating Example

. fis effectful: it may have state,

let rec foldr f a 1 exceptions, algebraic effects...

match 1 with

| [1 => a . .
- How do we specify foldr in a
| h :: t => .
way that allows the following
f h (foldr f a t) client to be verified?
let count = ref @ 1in

foldr (fun ¢ t -> incr count; ¢ + t) @ xs

Specification in Iris

Some clients may want to operate
only on certain kinds of lists f must preserve the invariant

(Vz,a',ys. {P xx Inv ys a'} f(z,a") {r. Inv (z::ys) 'r})}
x isList | xs*all P zs* Inv || a

VP, Inv, f,xs,I. {

foldr should not change the list foldr f a (Separation logic) property
relating suffix of input list

{T° isList | xs * Inv s T} traversed to result

let rec foldr f a 1
match 1 with
| [1 => a
| h :: t =>
f h (foldr f a t)

(Vz,d,ys. {P z*Inv ys a'} f(z,ad') {r. Inv (z::ys) r}) }

The use of abstract properties =t

{r. isList | zs* Inv xs r}

. The specification commits to an abstraction of f's behavior
- This abstraction may not be precise enough for a given client

The specification of foldr is higher-order in the sense that it involves nested Hoare triples (here
in the precondition). The reason being that foldr takes a function f as argument, hence we
can’t specify foldr without having some knowledge or specification for the function f. Different
clients may instantiate foldr with some very different functions, hence it can be hard to give
a specification for f that is reasonable and general enough to support all these choices. In
particular knowing when one has found a good and provable specification can be difficult in

itself.
https://iris-project.org/tutorial-pdfs/iris-lecture-notes.pdf (pg 32)

https://iris-project.org/tutorial-pdfs/iris-lecture-notes.pdf

Problem 1: mutating the list
VP, Inv, f. 25,1, { (Va,a',ys. {P xzx Inv ys a'} f(z,a’) {r. Inv (z::ys) 'r'})}

x isList | s all P xs* Inv || a

foldr f a'l

{r. isList | s Inv xs 7}

I x

let foldr_ex1 1 = foldr (fun x r -> let v
1 v+l; v+r) 1 0

in X :

To specify the list mutation, we would need to state isList [xs’
Inv xs r tells us nothing about xs’

Problem 2: stronger precondition

x isList | xsx all P xs Inv || a

foldr f al

{r. isList | xs x Inv xs T}

VP Inv, 5.1 {(Vw,a’,ys.{P z*Inv ys a'} f(z,a") {r. Inv (z::ys) 'r'})}

let foldr_ex2 1 = foldr (fun x r -> assert(x+r>=0);x+r) 1 @

This function argument relies on a property concerning intermediate results
P constrains individual elements only

Inv tells us about r, but not x

It’s possible to assume something stronger here (x>0 A r > 0), but it’s
awkward in general to decompose the property into two parts

Problem 3: effects outside metalogic
VP Inv, 5.1, { (\V/.iB,C.L/,yS.{P z*Inv ys a'} f(z,a") {r. Inv (z::ys) ’r})}
x isList | s all P xs* Inv || a

foldr f a'l

{r. isList | xs x Inv xs T}

let foldr_ex3 1 = foldr (fun x r -> if x>=0 then x+r
else raise Exc()) 1 @

- fmust return a value to preserve the invariant

Trying to abstract fs behavior into a predicate of the underlying logic limits
expressiveness

A pure logic (e.g. SMT) cannot abstract over mutation
Separation logic allows mutation, but not exceptions/effects

Why was abstraction needed?

It is difficult to represent unknown higher-order effectful calls
precisely in pre/post specifications

ldea: generalize Hoare triples with ingredients needed

assert/exhale Sequencing

p = reqP |ens[r|Q | p;p| f(z,r)[Ty.o|p Ve
assume/inhale (Un)interpreted relation

D, P,Q:=0cAT ocu=emp|x—y|loxo|..

Intuition (semantics).

o =reqP |ens[r|Q |¢;p| f(z,7) | y. 0| Ve

{P}e{r.Q} = Vs,s'.(s,e) — (S 0)N(sEP)= (s,v) EQ

{P} e{r. Q} = {ensemp} e {req P;ens|r| Q}
{ensemp} e {p} = Vs,5 .(s,e) — (s',v) = (5,5 ,v) F p

10

Intuition (reasoning)

p = reqP |ens[r]Q | p;p| f(z,7) [3y.¢ Ve

{$|—>y}'${’f’ ZBI—>y/\,’a:y} SLDeref

S f
{¢} lxz {p;Jy,r.reqz— y;ens|r|z— yAr=y} tDere

11

Intuition (reasoning)

p = reqP |ens[r|Q|y;p| flz,r) | Ty.0|p Ve

Vy- { Pr t fly){r- Qr}) Pk Prlz/y|+F
{P} flx){r Qslz/y]+xF }

SLApp

StApp

{e} f(z) {p;3r.f(z,7)}

Our solution: staged logic

p = reqP |ens[r|Q | p;p| f(z,r) | y.o o Ve

1. Sequencing and uninterpreted relations
2. Recursive formulae

3. Re-summarization of recursion/lemmas

4. Compaction via biabduction

—> Defer abstraction until appropriate

1. Sequencing and uninterpreted relations

o =reqP |ens[r|Q |¢;p| f(z,7) | y. 0| Ve

let hello f x y = hello(f, xz,y, res) =
X = Ix + 1; da.reqx+—a;ensxc— a+1;
let r = f y in dr. f(y,r);
let r2 = !'x + r in 3b. reqr—b*xyr— _;
y = r2; ens xr+— bx*xy+— resA\res=b-+r
r2

. Uninterpreted relations represent unknown function parameters
. Sequencing allows them to serve as placeholders for effects

14

2. Recursive formulae

o =reqP |ens[r|Q |¢;p| f(z,7) | y. 0| Ve

let rec foldr f a 1 = foldr(f,a,l, res) =
match 1 with ens l:[]/\res:a,
| [1 => a vV ar,li; ens l=x:l;;
| h :: t => fOldT(faa’yllvr);f(wvraTes)

f h (foldr f a t) foldr(f, a,1, res) =

3P, Inv,zs.req List(l,zs) * Inv([], a)Aall(P, xs)
N (z,a’,7)E(Jys.req Inv(ys,a’)AP(z); ens[r] Inv(z::ys,T)) ;
ens|res| List(l, zs) * Inv(xs, res)

- The call to f can be represented directly, without requiring abstraction
Recursion is used where needed

15

3. Re-summarization of recursion/lemmas

o =reqP |ens[r|Q |¢;p| f(z,7) | y. 0| Ve

Recovering abstraction: re-summarization

let foldr_sum_state x xs init
foldr_sum_state(x, xs, init, res) =
34,7 .reqx — i;ens r — i+rAres=r+init Asum(xs, r)
= let gct=x:=1x+c¢c; ¢+t in foldr g xs init

foldr(g, xs, init, res)

Vz,zs, init, res . . . : "
P C J4,7.reqx— i; ens x — i+rAres=r+init Ar=sum(zs)

16

3. Re-summarization of recursion/lemmas

o =reqP |ens[r|Q |¢;p| f(z,7) | y. 0| Ve

- Recovering abstraction: proving entailments

SL

g1, T~ itrthAres=h+r+init Ar=sum(t)
x—=iEdi.z—ixemp F3r.x—i+rAres=r+init Ar=sum(h::t)

ENTAIL

di.reqz>i;3r, h,t.ens x> i+r+hAres=h+r+init Ar=sum(t)Azs=h::t
C 3i.reqz+— i;3r.ensz— i+rAres=r+init Ar=sum(xs)

: _ _ — NORMALIZE
dri, h,t.enszs=h::t;3i,r.reqx — i; ens x — i+rAri=r+init A\r=sum(t);

db.reqx+— b;ensx — b+hAres=h+r1 C ...

, , , . UNFOLD
drq1, h,t.ens zs=h::t; i, 7. reqx — i;ens x — i+rAri=r+initA\r=sum(t); g(h, r1, res) C ...

(... V371, h,t.ens xzs=h::t; foldr(g, t, init,r1); g(h,r1,res)) C ...
foldr(g, zs, init, res)
C 34,r.reqz+— i;ens x — i+rAres=r+init Ar=sum(xs)

INDUCTION
UNFOLD

Vz, xs, init, res .

4. Compaction via biabduction

p = reqP |ens[r|Q|y;p| flz,r) | Ty.0|p Ve

di.reqx > i;37, h,t.ens z— i+r+hAres=h+r+init A\r=sum(t) A\xs=h::t

C di.reqz+—i;dr.ensx— i+rAres=r+init Ar=sum(zs)
NORMALIZE

drq1, h,t.ens zs=h::t; i, r.reqx— i; ens x — i+rAr;=r+init A\r=sum(t);
db.reqxz+— b;ens x+— b+hAres=h+r, C ...

Da * D1 |_D2 *Df
ens Dy;req Dy =—> req D,;ens Dy

18

4. Compaction via biabduction

p = reqP |ens[r|Q|y;p| flz,r) | Ty.0|p Ve

di.reqx > i;37, h,t.ens z— i+r+hAres=h+r+init A\r=sum(t) A\xs=h::t

C di.reqz+—i;dr.ensx— i+rAres=r+init Ar=sum(zs)
NORMALIZE

drq1, h,t.ens zs=h::t; i, r.reqx— i; ens x — i+rAr;=r+init A\r=sum(t);
db.reqxz+— b;ens x+— b+hAres=h+r, C ...

(b=i+r)*xx+—i+r ADFx—bxD
enst—i+r A\ D;reqx— b —> reqb=i+r;ens D

19

12

Problem 1: mutating the list

I'x
v+l; v+r) 1 0

let foldr_ex1 1 = foldr (fun x r -> let v
in X :

foldr_ex1(l,res) C Jxs.req List(l, zs);
Jys . ens List(l, ys) Amapinc(zs)=ysAsum(zxs)=res

An invariant is not needed to specify the function argument

We can directly use a shape predicate, with value described by a
pure function

20

Problem 2: stronger precondition

let foldr_ex2 1 = foldr (fun x r -> assert(x+r>=0);x+r) 1 0
foldr_ex2(l, res) C req allSPos(l); ens sum(l)=res

- We can directly use a predicate on [to require that all suffix-sums
are positive

21

Problem 3: effects outside metalogic

let foldr_ex3 1 = foldr (fun x r -> if x>=0 then x+r
else raise Exc()) 1 @

foldr_ex3(l, res) C ens allPos(l)Asum(l)=res V (ens|_|—allPos(l); Ezc())

- An exception can be modelled as an interpreted relation
(more in ICFP 2024)

- We do not delegate effects to the underlying separation logic

Implementation & Evaluation

Heifer Cameleer [21] Prusti [27]

Benchmark LoC LoS T Tp LoC LoS T LoC LoS T
map 13 11 0.66 058 | 10 45 1.25 -
map_closure 18 7 1.06 0.77 X -
fold 23 12 1.06 0.87 | 21 48 8.08 -
fold_closure 23 12 1.25 0.89 X -
iter 11 4 040 0.32 X -
compose 3 1 0.11 0.09 2 6 0.05 -
compose_closure | 23 4 044 0.32 X X
closure [24] 27 5 037 0.27 X 13 11 6.75
closure_list 7 1 0.15 0.09 X -
applyN 6 1 019 0.17 | 12 13 0.37 -
blameassgn [11] 14 6 0.31 0.28 X 13 9 6.24
counter [16] 16 4 024 0.18 X 11 7 6.37
lambda 13 5 0.25 0.22 X -

197 73 45 112 37 27

Table 1: A Comparison with Cameleer and Prusti. (Programs that are natively
inexpressible are marked with “X”. Programs that cannot be reproduced from Prusti’s
artifact [1] are marked with “-”. We use T to denote the total verification time (in
seconds) and T'p to record the time spent on the external provers.)

5K LoC, OCaml 5

Small but representative
examples

Reasonably low
verification time

0.37 spec : code

Feasibility & increased
expressiveness over
existing systems

23

Conclusion ¢ :=reqP |ens[r]|Q|y;p| f(z,7)|Iy.0|eVe

Staged logic for effectful higher-order
programs
1. Sequencing and uninterpreted relations
2. Recursive formulae
3. Re-summarization of recursion/lemmas Thanks for
4. Compaction via biabduction

, | | listening!
= Defer abstraction until appropriate

Heifer — a new automated verifier
https://github.com/hipsleek/heifer

*Higher-order Effectful Imperative Function Entailments and Reasoning
24

https://github.com/hipsleek/heifer

	Slide 1: Staged Specification Logic for Verifying Higher-Order Imperative Programs
	Slide 2: Challenges: Effectful Higher-order Functions
	Slide 3: Motivating Example
	Slide 4: Specification in Iris
	Slide 5: The use of abstract properties
	Slide 6: Problem 1: mutating the list
	Slide 7: Problem 2: stronger precondition
	Slide 8: Problem 3: effects outside metalogic
	Slide 9: Why was abstraction needed?
	Slide 10: Intuition (semantics).
	Slide 11: Intuition (reasoning)
	Slide 12: Intuition (reasoning)
	Slide 13: Our solution: staged logic
	Slide 14: 1. Sequencing and uninterpreted relations
	Slide 15: 2. Recursive formulae
	Slide 16: 3. Re-summarization of recursion/lemmas
	Slide 17: 3. Re-summarization of recursion/lemmas
	Slide 18: 4. Compaction via biabduction
	Slide 19: 4. Compaction via biabduction
	Slide 20: Problem 1: mutating the list
	Slide 21: Problem 2: stronger precondition
	Slide 22: Problem 3: effects outside metalogic
	Slide 23: Implementation & Evaluation
	Slide 24: Conclusion
	Slide 25
	Slide 27: 4. Compaction via biabduction
	Slide 28: 4. Compaction via biabduction
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37: Hoare Rules with Staged Logics
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42: 1. Sequencing and uninterpreted relations
	Slide 43: 1. Sequencing and uninterpreted relations
	Slide 50: More
	Slide 51: Closures
	Slide 55
	Slide 56: Extending the staged spec logic to algebraic effects
	Slide 57: Extending the staged spec logic to algebraic effects
	Slide 58: Extending the staged spec logic to algebraic effects
	Slide 59
	Slide 60: Automated Temporal Verification for Algebraic Effects
	Slide 61: Algebraic Effects
	Slide 62: User-defined Effects and Handlers
	Slide 63: User-defined Effects and Handlers
	Slide 64: Algebraic Effects
	Slide 65: Algebraic Effects
	Slide 66: Algebraic Effects
	Slide 67: Algebraic Effects
	Slide 68: Algebraic Effects
	Slide 69: Algebraic Effects
	Slide 70: Algebraic Effects
	Slide 71: Algebraic Effects
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 91: Cameleer
	Slide 92: Cameleer

