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Challenges: Effectful Higher-order Functions

Programs today are rife with effectful higher-order functions, but
(automated) verifier support for them varies greatly

Pure only, e.g. Dafny, Why3, Cameleer
- Type system guarantees, e.g. Creusot, Prusti

Interactive, e.g. Iris, CFML, Pulse/Steel (F*)

Even when they are supported, specifications are often imprecise

Is there a precise and general way to support effectful higher-order
functions in automated program verifiers?



Motivating Example

. fis effectful: it may have state,

let rec foldr f a 1 exceptions, algebraic effects...

match 1 with

| [1 => a . .
- How do we specify foldr in a
| h :: t => .
way that allows the following
f h (foldr f a t) client to be verified?
let count = ref @ 1in

foldr (fun ¢ t -> incr count; ¢ + t) @ xs



Specification in Iris

Some clients may want to operate
only on certain kinds of lists f must preserve the invariant

(Vz,a',ys. {P xx Inv ys a'} f(z,a") {r. Inv (z::ys) 'r})}
x isList | xs*all P zs* Inv || a

VP, Inv, f,xs,I. {

foldr should not change the list  foldr f a (Separation logic) property
relating suffix of input list

{T° isList | xs * Inv s T} traversed to result

let rec foldr f a 1
match 1 with
| [1 => a
| h :: t =>
f h (foldr f a t)



(Vz,d,ys. {P z*Inv ys a'} f(z,ad') {r. Inv (z::ys) r}) }

The use of abstract properties =t

{r. isList | zs* Inv xs r}

. The specification commits to an abstraction of f's behavior
- This abstraction may not be precise enough for a given client

The specification of foldr is higher-order in the sense that it involves nested Hoare triples (here
in the precondition). The reason being that foldr takes a function f as argument, hence we
can’t specify foldr without having some knowledge or specification for the function f. Different
clients may instantiate foldr with some very different functions, hence it can be hard to give
a specification for f that is reasonable and general enough to support all these choices. In
particular knowing when one has found a good and provable specification can be difficult in

itself.
https://iris-project.org/tutorial-pdfs/iris-lecture-notes.pdf (pg 32)



https://iris-project.org/tutorial-pdfs/iris-lecture-notes.pdf

Problem 1: mutating the list
VP, Inv, f. 25,1, { (Va,a',ys. {P xzx Inv ys a'} f(z,a’) {r. Inv (z::ys) 'r'})}

x isList | s all P xs* Inv || a

foldr f a'l

{r. isList | s Inv xs 7}

I x

let foldr_ex1 1 = foldr (fun x r -> let v
1 v+l; v+r) 1 0

in X :

To specify the list mutation, we would need to state isList [ xs’
Inv xs r tells us nothing about xs’



Problem 2: stronger precondition

x isList | xsx all P xs Inv || a

foldr f al

{r. isList | xs x Inv xs T}

VP Inv, 5.1 {(Vw,a’,ys.{P z*Inv ys a'} f(z,a") {r. Inv (z::ys) 'r'})}

let foldr_ex2 1 = foldr (fun x r -> assert(x+r>=0);x+r) 1 @

This function argument relies on a property concerning intermediate results
P constrains individual elements only

Inv tells us about r, but not x

It’s possible to assume something stronger here (x>0 A r > 0), but it’s
awkward in general to decompose the property into two parts



Problem 3: effects outside metalogic
VP Inv, 5.1, { (\V/.iB,C.L/,yS.{P z*Inv ys a'} f(z,a") {r. Inv (z::ys) ’r})}
x isList | s all P xs* Inv || a

foldr f a'l

{r. isList | xs x Inv xs T}

let foldr_ex3 1 = foldr (fun x r -> if x>=0 then x+r
else raise Exc()) 1 @

- fmust return a value to preserve the invariant

Trying to abstract fs behavior into a predicate of the underlying logic limits
expressiveness

A pure logic (e.g. SMT) cannot abstract over mutation
Separation logic allows mutation, but not exceptions/effects



Why was abstraction needed?

It is difficult to represent unknown higher-order effectful calls
precisely in pre/post specifications

ldea: generalize Hoare triples with ingredients needed

assert/exhale Sequencing

p = reqP |ens[r|Q | p;p| f(z,r)[Ty.o|p Ve
assume/inhale (Un)interpreted relation

D, P,Q:=0cAT ocu=emp|x—y|loxo|..



Intuition (semantics).

o =reqP |ens[r|Q |¢;p| f(z,7) | y. 0| Ve

{P}e{r.Q} = Vs,s'.(s,e) — (S 0)N(sEP)= (s,v) EQ

{P} e{r. Q} = {ensemp} e {req P;ens|r| Q}
{ensemp} e {p} = Vs,5 .(s,e) — (s',v) = (5,5 ,v) F p
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Intuition (reasoning)

p = reqP |ens[r]Q | p;p| f(z,7) [3y.¢ Ve

{$|—>y}'${’f’ ZBI—>y/\,’a:y} SLDeref

S f
{¢} lxz {p;Jy,r.reqz— y;ens|r|z— yAr=y} tDere
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Intuition (reasoning)

p = reqP |ens[r|Q|y;p| flz,r) | Ty.0|p Ve

Vy- { Pr t fly){r- Qr}) Pk Prlz/y|+F
{P} flx){r Qslz/y]+xF }

SLApp

StApp

{e} f(z) {p;3r.f(z,7)}



Our solution: staged logic

p = reqP |ens[r|Q | p;p| f(z,r) | y.o o Ve

1. Sequencing and uninterpreted relations
2. Recursive formulae

3. Re-summarization of recursion/lemmas

4. Compaction via biabduction

—> Defer abstraction until appropriate



1. Sequencing and uninterpreted relations

o =reqP |ens[r|Q |¢;p| f(z,7) | y. 0| Ve

let hello f x y = hello(f, xz,y, res) =
X = Ix + 1; da.reqx+—a;ensxc— a+1;
let r = f y in dr. f(y,r);
let r2 = !'x + r in 3b. reqr—b*xyr— _;
y = r2; ens xr+— bx*xy+— resA\res=b-+r
r2

. Uninterpreted relations represent unknown function parameters
. Sequencing allows them to serve as placeholders for effects
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2. Recursive formulae

o =reqP |ens[r|Q |¢;p| f(z,7) | y. 0| Ve

let rec foldr f a 1 = foldr(f,a,l, res) =
match 1 with ens l:[]/\res:a,
| [1 => a vV ar,li; ens l=x:l;;
| h :: t => fOldT(faa’yllvr);f(wvraTes)

f h (foldr f a t) foldr(f, a,1, res) =

3P, Inv,zs.req List(l,zs) * Inv([], a)Aall( P, xs)
N (z,a’,7)E(Jys.req Inv(ys,a’)AP(z); ens[r] Inv(z::ys,T)) ;
ens|res| List(l, zs) * Inv(xs, res)

- The call to f can be represented directly, without requiring abstraction
Recursion is used where needed
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3. Re-summarization of recursion/lemmas

o =reqP |ens[r|Q |¢;p| f(z,7) | y. 0| Ve

Recovering abstraction: re-summarization

let foldr_sum_state x xs init
foldr_sum_state(x, xs, init, res) =
34,7 .reqx — i;ens r — i+rAres=r+init Asum(xs, r)
= let gct=x:=1x+c¢c; ¢+t in foldr g xs init

foldr(g, xs, init, res)

Vz,zs, init, res . . . : "
P C J4,7.reqx— i; ens x — i+rAres=r+init Ar=sum(zs)
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3. Re-summarization of recursion/lemmas

o =reqP |ens[r|Q |¢;p| f(z,7) | y. 0| Ve

- Recovering abstraction: proving entailments

SL

g1, T~ itrthAres=h+r+init Ar=sum(t)
x—=iEdi.z—ixemp F3r.x—i+rAres=r+init Ar=sum(h::t)

ENTAIL

di.reqz>i;3r, h,t.ens x> i+r+hAres=h+r+init Ar=sum(t)Azs=h::t
C 3i.reqz+— i;3r.ensz— i+rAres=r+init Ar=sum(xs)

: _ _ — NORMALIZE
dri, h,t.enszs=h::t;3i,r.reqx — i; ens x — i+rAri=r+init A\r=sum(t);

db.reqx+— b;ensx — b+hAres=h+r1 C ...

, , , . UNFOLD
drq1, h,t.ens zs=h::t; i, 7. reqx — i;ens x — i+rAri=r+initA\r=sum(t); g(h, r1, res) C ...

(... V371, h,t.ens xzs=h::t; foldr(g, t, init,r1); g(h,r1,res)) C ...
foldr(g, zs, init, res)
C 34,r.reqz+— i;ens x — i+rAres=r+init Ar=sum(xs)

INDUCTION
UNFOLD

Vz, xs, init, res .



4. Compaction via biabduction

p = reqP |ens[r|Q|y;p| flz,r) | Ty.0|p Ve

di.reqx > i;37, h,t.ens z— i+r+hAres=h+r+init A\r=sum(t) A\xs=h::t

C di.reqz+—i;dr.ensx— i+rAres=r+init Ar=sum(zs)
NORMALIZE

drq1, h,t.ens zs=h::t; i, r.reqx— i; ens x — i+rAr;=r+init A\r=sum(t);
db.reqxz+— b;ens x+— b+hAres=h+r, C ...

Da * D1 |_D2 *Df
ens Dy;req Dy =—> req D,;ens Dy
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4. Compaction via biabduction

p = reqP |ens[r|Q|y;p| flz,r) | Ty.0|p Ve

di.reqx > i;37, h,t.ens z— i+r+hAres=h+r+init A\r=sum(t) A\xs=h::t

C di.reqz+—i;dr.ensx— i+rAres=r+init Ar=sum(zs)
NORMALIZE

drq1, h,t.ens zs=h::t; i, r.reqx— i; ens x — i+rAr;=r+init A\r=sum(t);
db.reqxz+— b;ens x+— b+hAres=h+r, C ...

(b=i+r)*xx+—i+r ADFx—bxD
enst—i+r A\ D;reqx— b —> reqb=i+r;ens D
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Problem 1: mutating the list

I'x
v+l; v+r) 1 0

let foldr_ex1 1 = foldr (fun x r -> let v
in X :

foldr_ex1(l,res) C Jxs.req List(l, zs);
Jys . ens List(l, ys) Amapinc(zs)=ysAsum(zxs)=res

An invariant is not needed to specify the function argument

We can directly use a shape predicate, with value described by a
pure function
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Problem 2: stronger precondition

let foldr_ex2 1 = foldr (fun x r -> assert(x+r>=0);x+r) 1 0
foldr_ex2(l, res) C req allSPos(l); ens sum(l)=res

- We can directly use a predicate on [ to require that all suffix-sums
are positive

21



Problem 3: effects outside metalogic

let foldr_ex3 1 = foldr (fun x r -> if x>=0 then x+r
else raise Exc()) 1 @

foldr_ex3(l, res) C ens allPos(l)Asum(l)=res V (ens|_|—allPos(l); Ezc())

- An exception can be modelled as an interpreted relation
(more in ICFP 2024)

- We do not delegate effects to the underlying separation logic



Implementation & Evaluation

Heifer Cameleer [21] Prusti [27]

Benchmark LoC LoS T Tp LoC LoS T LoC LoS T
map 13 11 0.66 058 | 10 45 1.25 -
map_closure 18 7 1.06 0.77 X -
fold 23 12 1.06 0.87 | 21 48  8.08 -
fold_closure 23 12 1.25 0.89 X -
iter 11 4 040 0.32 X -
compose 3 1 0.11 0.09 2 6 0.05 -
compose_closure | 23 4 044 0.32 X X
closure [24] 27 5 037 0.27 X 13 11 6.75
closure_list 7 1 0.15 0.09 X -
applyN 6 1 019 0.17 | 12 13 0.37 -
blameassgn [11] 14 6 0.31 0.28 X 13 9 6.24
counter [16] 16 4 024 0.18 X 11 7 6.37
lambda 13 5 0.25 0.22 X -

197 73 45 112 37 27

Table 1: A Comparison with Cameleer and Prusti. (Programs that are natively
inexpressible are marked with “X”. Programs that cannot be reproduced from Prusti’s
artifact [1] are marked with “-”. We use T to denote the total verification time (in
seconds) and T'p to record the time spent on the external provers.)

5K LoC, OCaml 5

Small but representative
examples

Reasonably low
verification time

0.37 spec : code

Feasibility & increased
expressiveness over
existing systems
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Conclusion ¢ :=reqP |ens[r]|Q|y;p| f(z,7)|Iy.0|eVe

Staged logic for effectful higher-order
programs
1. Sequencing and uninterpreted relations
2. Recursive formulae
3. Re-summarization of recursion/lemmas Thanks for
4. Compaction via biabduction

, | | listening!
= Defer abstraction until appropriate

Heifer — a new automated verifier
https://github.com/hipsleek/heifer

*Higher-order Effectful Imperative Function Entailments and Reasoning
24
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