
Tracing OCaml Programs
Darius Foo, Wei-Ngan Chin

National University of Singapore
OCaml 2022



Debugging in OCaml today

Can a combined tool mitigate the downsides of each approach?

#trace ocamldebug printf
ü Getting an 

overview
ü Reverse execution ü Control over output

ü Accessible

✗ Too much output
✗ Bytecode toplevel
✗ Needs inputs

✗ Hard to get an 
overview

✗ Code evaluation

✗ Modifying source
✗ Inserting printers



Type-aware record-and-replay debugging

• Instrument program to collect events
• e.g. function calls and returns, with arguments and return value

• Run program and record an execution trace
• Extract information from trace



Instrumentation

let cons x xs = x :: xs

let cons x xs =
record_start "cons" [show x; show xs];
let res = x :: xs in
record_end "cons" (show res);
res



in let rec aux n =
record_start "fact" [show n];
let res = fact_ aux in
record_end "fact" (show res);
res

in aux n

Instrumentation
let rec fact n =

if n = 0 then 1 else n * fact (n - 1)

let fact n =
let fact_ self n =
if n = 0 then 1 else n * self (n – 1)



Typical ppx

ppx typecheck compile

a.pp.cmt a.exea.pp.mla.ml



a.pp.ml

Typed ppx

a.ml a.pp.cmt a.exe

ppx typecheck compile

(typpx, typedppxlib)

a.pp.cmt

a.t.pp.ml

trace



Typed ppx redux

The overhead of typechecking twice is difficult to avoid in the general 
case.

This is a specific case: we can separate the parts of the program which 
produce recorded values from the parts which consume them.

This allows compilation to be staged.



Typed ppx redux

reader.ml reader.exe

binary trace

trace

a.ml a.pp.ml a.pp.cmt a.exe

ppx typecheck compile

reader.pp.ml

ppx compile



Tradeoffs

• Makes debugging a build problem instead of a runtime problem
• Code must be recompiled to be instrumented 
• Library code is not instrumented, however we can see its output

• Fragile uses of Typedtree APIs
• Less than vendoring typechecker

• Staged build a workaround for lack of ad hoc polymorphism?
• Separating content from schema does lower (runtime, compile) overhead

• Scalability?
• Lots of configuration for instrumentation process
• In principle, could be no more expensive than regular printf



Other debugging methods

• Logging, tracing, testing (Runtime Events)
• gdb, rr, dtrace
• ocamli, Furukawa et. al’s stepper
• magic-trace

• hat



Work in progress

• Try on projects of all kinds and sizes
• Make build integration simpler
• More ways to query traces (backward slicing, evaluate code, …)
• Concurrency

Thank you!

https://github.com/dariusf/ppx_debug

https://github.com/dariusf/ppx_debug

