Tracing OCaml Programs

Darius Foo, Wei-Ngan Chin

National University of Singapore
OCaml 2022



Debugging in OCaml today

#trace ocamldebug printf
v’ Getting an v’ Reverse execution v’ Control over output
overview v’ Accessible
X Too much output X Hard to get an X Modifying source
X Bytecode toplevel overview X Inserting printers
X Needs inputs X Code evaluation

Can a combined tool mitigate the downsides of each approach?



Type-aware record-and-replay debugging

* Instrument program to collect events
e e.g. function calls and returns, with arguments and return value

* Run program and record an execution trace
e Extract information from trace



Instrumentation

let cons xXx Xxs = X XS
let cons x xs =
record start "cons" [show xX; show xs];

let res = X :: Xs in
record end "cons" (show res);
res



Instrumentation

let rec fact n =
if n = 0 then 1 else n * fact (n - 1)

let fact n =
let fact self n =
if n = 0 then 1 else n * self (n — 1)

in let rec aux n =

record start "fact" [show n];
let res = fact aux in
record end "fact" (show res);
res

in aux n



Typical ppx

typecheck

compile

>

d.exe




Typed ppx

\ PPX

a.ml

typecheck

(typpx, typedppxlib)

compile
—

>

trace




Typed ppx redux

The overhead of typechecking twice is difficult to avoid in the general
case.

This is a specific case: we can separate the parts of the program which
produce recorded values from the parts which consume them.

This allows compilation to be staged.



Typed ppx redux

pPX _ typecheck [, _ compile
= " V= dRY2 {
— v —
a.mi a.pp.-ml a.pp.cmt a.exe

binary trace

PPX compile
E S8

reader.ml reader.pp.ml reader.exe trace




Tradeoffs

* Makes debugging a build problem instead of a runtime problem

* Code must be recompiled to be instrumented
 Library code is not instrumented, however we can see its output

* Fragile uses of Typedtree APIs
* Less than vendoring typechecker

 Staged build a workaround for lack of ad hoc polymorphism?
e Separating content from schema does lower (runtime, compile) overhead

 Scalability?
* Lots of configuration for instrumentation process
* |In principle, could be no more expensive than regular printf



Other debugging methods

* Logging, tracing, testing (Runtime Events)
e gdb, rr, dtrace

* ocamli, Furukawa et. al’s stepper

ocamli

* magic-trace

* hat




Work in progress

* Try on projects of all kinds and sizes
* Make build integration simpler
* More ways to query traces (backward slicing, evaluate code, ...)

* Concurrency

https://github.com/dariusf/ppx debug

Thank you!


https://github.com/dariusf/ppx_debug

